/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using System; using System.Collections.Generic; using NUnit.Framework; using Python.Runtime; using QuantConnect.Algorithm; using QuantConnect.Statistics; using QuantConnect.Tests.Engine.DataFeeds; namespace QuantConnect.Tests.Python { [TestFixture] public class PythonOptionTests { [Test] public void PythonFilterFunctionReturnsList() { var algorithm = new QCAlgorithm(); algorithm.SubscriptionManager.SetDataManager(new DataManagerStub(algorithm)); var spyOption = algorithm.AddOption("SPY"); using (Py.GIL()) { //Filter function that returns a list of symbols var module = PyModule.FromString(Guid.NewGuid().ToString(), "def filter(universe):\n" + " universe = universe.WeeklysOnly().Expiration(0, 10)\n" + " return [symbol for symbol in universe\n"+ " if symbol.ID.OptionRight != OptionRight.Put\n" + " and universe.Underlying.Price - symbol.ID.StrikePrice < 10]\n" ); var filterFunction = module.GetAttr("filter"); Assert.DoesNotThrow(() => spyOption.SetFilter(filterFunction)); } } [Test] public void PythonFilterFunctionReturnsUniverse() { var algorithm = new QCAlgorithm(); algorithm.SubscriptionManager.SetDataManager(new DataManagerStub(algorithm)); var spyOption = algorithm.AddOption("SPY"); using (Py.GIL()) { //Filter function that returns a OptionFilterUniverse var module = PyModule.FromString(Guid.NewGuid().ToString(), "def filter(universe):\n" + " universe = universe.WeeklysOnly().Expiration(0, 5)\n" + " return universe" ); var filterFunction = module.GetAttr("filter"); Assert.DoesNotThrow(() => spyOption.SetFilter(filterFunction)); } } [Test] public void FilterReturnsUniverseRegression() { var parameter = new RegressionTests.AlgorithmStatisticsTestParameters("FilterUniverseRegressionAlgorithm", new Dictionary { {PerformanceMetrics.TotalOrders, "2"}, {"Average Win", "0%"}, {"Average Loss", "-0.02%"}, {"Compounding Annual Return", "-1.521%"}, {"Drawdown", "0.000%"}, {"Expectancy", "-1"}, {"End Equity", "99979"}, {"Net Profit", "-0.021%"}, {"Sharpe Ratio", "0"}, {"Probabilistic Sharpe Ratio", "0%"}, {"Loss Rate", "100%"}, {"Win Rate", "0%"}, {"Profit-Loss Ratio", "0"}, {"Alpha", "0"}, {"Beta", "0"}, {"Annual Standard Deviation", "0"}, {"Annual Variance", "0"}, {"Information Ratio", "0"}, {"Tracking Error", "0"}, {"Treynor Ratio", "0"}, {"Total Fees", "$1.00"}, {"OrderListHash", "5992d2e5c087de07814404f81762e2ac"} }, Language.Python, AlgorithmStatus.Completed); AlgorithmRunner.RunLocalBacktest(parameter.Algorithm, parameter.Statistics, parameter.Language, parameter.ExpectedFinalStatus); } } }