/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using System; using NUnit.Framework; using Python.Runtime; using QuantConnect.Algorithm; using QuantConnect.Securities.Equity; using QuantConnect.Tests.Engine.DataFeeds; namespace QuantConnect.Tests.Python { [TestFixture] public class NamedArgumentsTests { [Test] public void AddEquityTest() { var algorithm = new QCAlgorithm(); algorithm.SubscriptionManager.SetDataManager(new DataManagerStub(algorithm)); using (Py.GIL()) { // Test function that will used named args in Python -> C# var module = PyModule.FromString(Guid.NewGuid().ToString(), "def test(algorithm):\n" + " aapl = algorithm.AddEquity(ticker='AAPL')\n" + " return aapl\n" ); var testFunction = module.GetAttr("test"); var equity = testFunction.Invoke(algorithm.ToPython()).As(); Assert.AreEqual("AAPL", equity.Symbol.Value); } } } }