/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by aaplicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using NUnit.Framework; using Python.Runtime; using QuantConnect.Algorithm.Framework.Portfolio; using System; namespace QuantConnect.Tests.Algorithm.Framework.Portfolio; [TestFixture] public class PortfolioOptimizerPythonWrapperTests { [Test] public void OptimizeIsCalled() { using (Py.GIL()) { var module = PyModule.FromString(Guid.NewGuid().ToString(), @$" from AlgorithmImports import * class CustomPortfolioOptimizer: def __init__(self): self.OptimizeWasCalled = False def Optimize(self, historicalReturns, expectedReturns = None, covariance = None): self.OptimizeWasCalled= True"); var pyCustomOptimizer = module.GetAttr("CustomPortfolioOptimizer").Invoke(); var wrapper = new PortfolioOptimizerPythonWrapper(pyCustomOptimizer); var historicalReturns = new double[,] { { -0.50, -0.13 }, { 0.81, 0.31 }, { -0.02, 0.01 } }; wrapper.Optimize(historicalReturns); pyCustomOptimizer .GetAttr("OptimizeWasCalled") .TryConvert(out bool optimizerWasCalled); Assert.IsTrue(optimizerWasCalled); } } [Test] public void WrapperThrowsIfOptimizerDoesNotImplementInterface() { using (Py.GIL()) { var module = PyModule.FromString(Guid.NewGuid().ToString(), @$" from AlgorithmImports import * class CustomPortfolioOptimizer: def __init__(self): self.OptimizeWasCalled = False def Calculate(self, historicalReturns, expectedReturns = None, covariance = None): pass"); var pyCustomOptimizer = module.GetAttr("CustomPortfolioOptimizer").Invoke(); Assert.Throws(() => new PortfolioOptimizerPythonWrapper(pyCustomOptimizer)); } } }