/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by aaplicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using NUnit.Framework; using QuantConnect.Algorithm.Framework.Portfolio; using System; using System.Collections.Generic; using System.Linq; namespace QuantConnect.Tests.Algorithm.Framework.Portfolio { [TestFixture] public class MinimumVariancePortfolioOptimizerTests : PortfolioOptimizerTestsBase { private Dictionary _targetReturns; [OneTimeSetUp] public void Setup() { var historicalReturns1 = new double[,] { { 0.76, -0.06, 1.22, 0.17 }, { 0.02, 0.28, 1.25, -0.00 }, { -0.50, -0.13, -0.50, -0.03 }, { 0.81, 0.31, 2.39, 0.26 }, { -0.02, 0.02, 0.06, 0.01 } }; var historicalReturns2 = new double[,] { { -0.15, 0.67, 0.45 }, { -0.44, -0.10, 0.07 }, { 0.04, -0.41, 0.01 }, { 0.01, 0.03, 0.02 } }; var historicalReturns3 = new double[,] { { -0.02, 0.65, 1.25 }, { -0.29, -0.39, -0.50 }, { 0.29, 0.58, 2.39 }, { 0.00, -0.01, 0.06 } }; var historicalReturns4 = new double[,] { { 0.76, 0.25, 0.21 }, { 0.02, -0.15, 0.45 }, { -0.50, -0.44, 0.07 }, { 0.81, 0.04, 0.01 }, { -0.02, 0.01, 0.02 } }; var expectedReturns1 = new double[] { 0.21, 0.08, 0.88, 0.08 }; var expectedReturns2 = new double[] { -0.13, 0.05, 0.14 }; var expectedReturns3 = (double[])null; var expectedReturns4 = (double[])null; var covariance1 = new double[,] { { 0.31, 0.05, 0.55, 0.07 }, { 0.05, 0.04, 0.18, 0.01 }, { 0.55, 0.18, 1.28, 0.12 }, { 0.07, 0.01, 0.12, 0.02 } }; var covariance2 = new double[,] { { 0.05, -0.02, -0.01 }, { -0.02, 0.21, 0.09 }, { -0.01, 0.09, 0.04 } }; var covariance3 = new double[,] { { 0.06, 0.09, 0.28 }, { 0.09, 0.25, 0.58 }, { 0.28, 0.58, 1.66 } }; var covariance4 = (double[,])null; HistoricalReturns = new List { historicalReturns1, historicalReturns2, historicalReturns3, historicalReturns4, historicalReturns1, historicalReturns2, historicalReturns3, historicalReturns4 }; ExpectedReturns = new List { expectedReturns1, expectedReturns2, expectedReturns3, expectedReturns4, expectedReturns1, expectedReturns2, expectedReturns3, expectedReturns4 }; Covariances = new List { covariance1, covariance2, covariance3, covariance4, covariance1, covariance2, covariance3, covariance4 }; ExpectedResults = new List { new double[] { -0.089212, 0.23431, -0.040975, 0.635503 }, new double[] { 0.366812, -0.139738, 0.49345 }, new double[] { 0.562216, 0.36747, -0.070314 }, new double[] { -0.119241, 0.443464, 0.437295 }, new double[] { -0.215505, 0.130699, 0.084806, 0.56899 }, new double[] { -0.275, 0.275, 0.45 }, new double[] { -0.129512, 0.551139, 0.319349 }, new double[] { 0.052859, 0.144177, 0.802964 }, }; _targetReturns = new Dictionary { { 4, 0.15d }, { 5, 0.25d }, { 6, 0.5d }, { 7, 0.125d } }; } protected override IPortfolioOptimizer CreateOptimizer() { return new MinimumVariancePortfolioOptimizer(); } [TestCase(0)] [TestCase(1)] [TestCase(2)] [TestCase(3)] public override void OptimizeWeightings(int testCaseNumber) { base.OptimizeWeightings(testCaseNumber); } [TestCase(4)] [TestCase(5)] [TestCase(6)] [TestCase(7)] public void OptimizeWeightingsSpecifyingTargetReturns(int testCaseNumber) { var testOptimizer = new MinimumVariancePortfolioOptimizer(targetReturn: _targetReturns[testCaseNumber]); var result = testOptimizer.Optimize( HistoricalReturns[testCaseNumber], ExpectedReturns[testCaseNumber], Covariances[testCaseNumber]); Assert.AreEqual(ExpectedResults[testCaseNumber], result.Select(x => Math.Round(x, 6))); Assert.AreEqual(1d, result.Select(x => Math.Round(Math.Abs(x), 6)).Sum()); } [TestCase(0)] public void EqualWeightingsWhenNoSolutionFound(int testCaseNumber) { var testOptimizer = new MinimumVariancePortfolioOptimizer(upper: -1); var expectedResult = new double[] { 0.25, 0.25, 0.25, 0.25 }; var result = testOptimizer.Optimize(HistoricalReturns[testCaseNumber]); Assert.AreEqual(expectedResult, result); } [TestCase(0)] [TestCase(1)] [TestCase(2)] [TestCase(3)] public void BoundariesAreNotViolated(int testCaseNumber) { var lower = 0d; var upper = 0.5d; var testOptimizer = new MinimumVariancePortfolioOptimizer(lower, upper); var result = testOptimizer.Optimize( HistoricalReturns[testCaseNumber], ExpectedReturns[testCaseNumber], Covariances[testCaseNumber]); foreach (var x in result) { var rounded = Math.Round(x, 6); Assert.GreaterOrEqual(rounded, lower); Assert.LessOrEqual(rounded, upper); }; } [Test] public void SingleSecurityPortfolioReturnsOne() { var testOptimizer = new MinimumVariancePortfolioOptimizer(); var historicalReturns = new double[,] { { 0.76 }, { 0.02 }, { -0.50 } }; var expectedResult = new double[] { 1 }; var result = testOptimizer.Optimize(historicalReturns); Assert.AreEqual(expectedResult, result); } } }