/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by aaplicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using NUnit.Framework; using QuantConnect.Algorithm.Framework.Portfolio; using System; using System.Collections.Generic; using System.Linq; namespace QuantConnect.Tests.Algorithm.Framework.Portfolio { [TestFixture] public class MaximumSharpeRatioPortfolioOptimizerTests : PortfolioOptimizerTestsBase { [OneTimeSetUp] public void SetUp() { HistoricalReturns = new List { new double[,] { { 0.02, -0.02, 0.28 }, { -0.50, -0.29, -0.13 }, { 0.81, 0.29, 0.31 }, { -0.03, -0.00, 0.01 } }, new double[,] { { 0.10, 0.20, 0.4 }, { 0.12, 0.25, 0.4 }, { 0.11, 0.22, 0.4 } }, new double[,] { { -0.19, 0.50, 0.45 }, { -0.62, -0.65, 0.07 }, { -0.14, 1.02, 0.01 }, { 0.00, -0.03, 0.01 } }, new double[,] { { 0.46, 0.28, 0.58, 0.26, 0.14 }, { 0.52, 0.31, 0.43, 7.43, -0.00 }, { 0.13, 0.65, 0.52, 0.50, -0.08 }, { -0.41, -0.39, -0.28, -0.65, -0.20 }, { 0.77, 0.58, 0.58, 1.02, 0.03 }, { -0.03, -0.01, -0.01, -0.03, 0.07 } }, new double[,] { { -0.50, -0.13 }, { 0.81, 0.31 }, { -0.02, 0.01 } }, new double[,] { { 0.31, 0.25, 0.43 }, { 0.65, 0.60, 0.52 }, { -0.39, -0.22, -0.28 }, { 0.58, 0.13, 0.58 }, { -0.01, -0.00, -0.01 } }, new double[,] { { 0.13, 0.65, 1.25 }, { -0.41, -0.39, -0.50 }, { 0.77, 0.58, 2.39 }, { -0.03, -0.01, 0.04 } }, new double[,] { { 0.31, 0.43, 1.22, 0.03 }, { 0.65, 0.52, 1.25, 0.67 }, { -0.39, -0.28, -0.50, -0.10 }, { 0.58, 0.58, 2.39, -0.41 }, { -0.01, -0.01, 0.04, 0.03 } } }; ExpectedReturns = new List { new double[] { 0.08, -0.01, 0.12 }, new double[] { 0.11, 0.23, 0.4 }, new double[] { -0.24, 0.21, 0.14 }, null, new double[] { 0.10, 0.06 }, new double[] { 0.23, 0.15, 0.25 }, null, new double[] { 0.23, 0.25, 0.88, 0.04 } }; Covariances = new List { new double[,] { { 0.29, 0.13, 0.10 }, { 0.13, 0.06, 0.04 }, { 0.10, 0.04, 0.05 } }, null, new double[,] { { 0.07, 0.12, -0.00 }, { 0.12, 0.51, 0.03 }, { -0.00, 0.03, 0.04 } }, null, new double[,] { { 0.44, 0.15 }, { 0.15, 0.05 } }, new double[,] { { 0.19, 0.11, 0.16 }, { 0.11, 0.09, 0.09 }, { 0.16, 0.09, 0.14 } }, new double[,] { { 0.24, 0.20, 0.61 }, { 0.20, 0.25, 0.58 }, { 0.61, 0.58, 1.67 } }, new double[,] { { 0.19, 0.16, 0.44, 0.05 }, { 0.16, 0.14, 0.40, 0.02 }, { 0.44, 0.40, 1.29, -0.06 }, { 0.05, 0.02, -0.06, 0.15 } } }; ExpectedResults = new List { new double[] { -0.562396, 0.608942, 0.953453 }, new double[] { 0.686025, -0.269589, 0.583023 }, new double[] { 0.26394, -0.043374, 0.779434 }, new double[] { -0.223905, 0.401036, 1, 0.065329, -0.24246 }, new double[] { 0.5, 0.5 }, new double[] { -0.5, 0.5, 1 }, new double[] { -0.242647, 1, 0.242647 }, new double[] { -1, 0.922902, 0.364512, 0.712585 }, }; } protected override IPortfolioOptimizer CreateOptimizer() { return new MaximumSharpeRatioPortfolioOptimizer(); } [TestCase(0)] [TestCase(1)] [TestCase(2)] [TestCase(3)] [TestCase(4)] [TestCase(5)] [TestCase(6)] [TestCase(7)] public override void OptimizeWeightings(int testCaseNumber) { base.OptimizeWeightings(testCaseNumber); } [TestCase(0)] public void OptimizeWeightingsSpecifyingLowerBoundAndRiskFreeRate(int testCaseNumber) { var testOptimizer = new MaximumSharpeRatioPortfolioOptimizer(lower: 0, riskFreeRate: 0.04); var expectedResult = new double[] { 0, 0.44898, 0.55102 }; var result = testOptimizer.Optimize(HistoricalReturns[testCaseNumber]); Assert.AreEqual(expectedResult, result.Select(x => Math.Round(x, 6))); } [Test] public void SingleSecurityPortfolioReturnsNaN() { var testOptimizer = new MaximumSharpeRatioPortfolioOptimizer(); var historicalReturns = new double[,] { { -0.1 } }; var expectedReturns = new double[] { -0.1 }; var expectedResult = new double[] { double.NaN }; var result = testOptimizer.Optimize(historicalReturns, expectedReturns); Assert.AreEqual(result, expectedResult); } [Test] public void EqualWeightingsWhenNoSolutionFound() { var testOptimizer = new MaximumSharpeRatioPortfolioOptimizer(); var historicalReturns = new double[,] { { -0.10, -0.20 }, { -0.12, -0.25 } }; var expectedReturns = new double[] { -0.10, -0.25 }; var covariance = new double[,] { { 0.25, 0.12 }, { 0.45, 0.2 } }; // non positive definite var expectedResult = new double[] { 0.5, 0.5 }; var result = testOptimizer.Optimize(historicalReturns, expectedReturns, covariance); Assert.AreEqual(result, expectedResult); } [Test] public void BoundariesAreNotViolated() { var testCaseNumber = 1; var lower = 0d; var upper = 0.5d; var testOptimizer = new MaximumSharpeRatioPortfolioOptimizer(lower, upper); var result = testOptimizer.Optimize(HistoricalReturns[testCaseNumber], null, Covariances[testCaseNumber]); foreach (var x in result) { var rounded = Math.Round(x, 6); Assert.GreaterOrEqual(rounded, lower); Assert.LessOrEqual(rounded, upper); }; } } }