/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using NUnit.Framework; using Python.Runtime; using QuantConnect.Algorithm.Framework.Alphas; using System; using System.Collections.Generic; using QuantConnect.Data.UniverseSelection; using QuantConnect.Algorithm.Framework.Selection; using QuantConnect.Tests.Common.Data.UniverseSelection; using QuantConnect.Util; namespace QuantConnect.Tests.Algorithm.Framework.Alphas { [TestFixture] public class MacdAlphaModelTests : CommonAlphaModelTests { protected override IAlphaModel CreateCSharpAlphaModel() => new MacdAlphaModel(); protected override IAlphaModel CreatePythonAlphaModel() { using (Py.GIL()) { dynamic model = Py.Import("MacdAlphaModel").GetAttr("MacdAlphaModel"); var instance = model(); return new AlphaModelPythonWrapper(instance); } } protected override IEnumerable ExpectedInsights() { var period = TimeSpan.FromDays(12); return new[] { Insight.Price(Symbols.SPY, period, InsightDirection.Up), Insight.Price(Symbols.SPY, period, InsightDirection.Down), Insight.Price(Symbols.SPY, period, InsightDirection.Up) }; } protected override string GetExpectedModelName(IAlphaModel model) { return $"{nameof(MacdAlphaModel)}(12,26,9,Exponential,Daily)"; } [Test] public void MacdAlphaModelWarmsUpProperly() { SetUpHistoryProvider(); Algorithm.SetStartDate(2013, 10, 08); // Create a MacdAlphaModel for the test var model = new TestMacdAlphaModel(); // Set the alpha model Algorithm.SetAlpha(model); Algorithm.SetUniverseSelection(new ManualUniverseSelectionModel()); var changes = SecurityChangesTests.CreateNonInternal(AddedSecurities, RemovedSecurities); Algorithm.OnFrameworkSecuritiesChanged(changes); // Get the dictionary of macd indicators var symbolData = model.GetSymbolData(); // Check the symbolData dictionary is not empty Assert.NotZero(symbolData.Count); // Check all MACD indicators from the alpha are ready and have at least // one datapoint foreach (var item in symbolData) { var macd = item.Value.MACD; Assert.IsTrue(macd.IsReady); Assert.NotZero(macd.Samples); } } [Test] public void PythonMacdAlphaModelWarmsUpProperly() { using (Py.GIL()) { SetUpHistoryProvider(); Algorithm.SetStartDate(2013, 10, 08); Algorithm.SetUniverseSelection(new ManualUniverseSelectionModel()); // Create and set alpha model dynamic model = Py.Import("MacdAlphaModel").GetAttr("MacdAlphaModel"); var instance = model(); Algorithm.SetAlpha(instance); var changes = SecurityChangesTests.CreateNonInternal(AddedSecurities, RemovedSecurities); Algorithm.OnFrameworkSecuritiesChanged(changes); // Get the dictionary of macd indicators var symbolData = instance.symbolData; // Check the dictionary is not empty Assert.NotZero(symbolData.Length()); // Check all MACD indicators from the alpha are ready and have at least // one datapoint foreach (var item in symbolData) { var macd = symbolData[item].MACD; Assert.IsTrue(macd.IsReady.IsTrue()); Assert.NotZero(((PyObject)macd.Samples).GetAndDispose()); } } } } }