/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using Deedle; using MathNet.Numerics.Statistics; using System; using QuantConnect.Statistics; using System.Collections.Generic; using System.Linq; using QuantConnect.Data; namespace QuantConnect.Report { /// /// Rolling window functions /// public static class Rolling { private static readonly IRiskFreeInterestRateModel _interestRateProvider = new InterestRateProvider(); /// /// Calculate the rolling beta with the given window size (in days) /// /// The performance points you want to measure beta for /// The benchmark/points you want to calculate beta with /// Days/window to lookback /// Rolling beta public static Series Beta(SortedList performancePoints, SortedList benchmarkPoints, int windowSize = 132) { var dailyDictionary = StatisticsBuilder.PreprocessPerformanceValues(performancePoints.Select(x => new KeyValuePair(x.Key, (decimal)x.Value))); var dailyReturnsSeries = new Series(dailyDictionary); Series benchmarkReturns; if (benchmarkPoints.Count != 0) { var benchmarkReturnsDictionary = StatisticsBuilder.CreateBenchmarkDifferences(benchmarkPoints.Select(x => new KeyValuePair(x.Key, (decimal)x.Value)), benchmarkPoints.Keys.First(), benchmarkPoints.Keys.Last()); benchmarkReturns = new Series(benchmarkReturnsDictionary); } else { benchmarkReturns = new Series(benchmarkPoints); } var returns = Frame.CreateEmpty(); returns["strategy"] = dailyReturnsSeries; returns = returns.Join("benchmark", benchmarkReturns) .FillMissing(Direction.Forward) .DropSparseRows(); var correlation = returns .Window(windowSize) .SelectValues(x => Correlation.Pearson(x["strategy"].Values, x["benchmark"].Values)); var portfolioStandardDeviation = dailyReturnsSeries.Window(windowSize).SelectValues(s => s.StdDev()); var benchmarkStandardDeviation = benchmarkReturns.Window(windowSize).SelectValues(s => s.StdDev()); return (correlation * (portfolioStandardDeviation / benchmarkStandardDeviation)) .FillMissing(Direction.Forward) .DropMissing(); } /// /// Get the rolling sharpe of the given series with a lookback of . The risk free rate is adjustable /// /// Equity curve to calculate rolling sharpe for /// Number of months to calculate the rolling period for /// The number of trading days per year to increase result of Annual statistics /// Rolling sharpe ratio public static Series Sharpe(Series equityCurve, int months, int tradingDayPerYear) { var riskFreeRate = (double)_interestRateProvider.GetAverageRiskFreeRate(equityCurve.Keys); if (equityCurve.IsEmpty) { return equityCurve; } var dailyReturns = equityCurve.ResampleEquivalence(date => date.Date, s => s.LastValue()) .PercentChange(); var rollingSharpeData = new List>(); var firstDate = equityCurve.FirstKey(); foreach (var date in equityCurve.Keys) { var nMonthsAgo = date.AddMonths(-months); if (nMonthsAgo < firstDate) { continue; } var algoPerformanceLookback = dailyReturns.Between(nMonthsAgo, date); rollingSharpeData.Add( new KeyValuePair( date, Statistics.Statistics.SharpeRatio(algoPerformanceLookback.Values.ToList(), riskFreeRate, tradingDayPerYear) ) ); } return new Series(rollingSharpeData.Select(kvp => kvp.Key), rollingSharpeData.Select(kvp => kvp.Value)); } } }