/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using Deedle;
using MathNet.Numerics.Statistics;
using System;
using QuantConnect.Statistics;
using System.Collections.Generic;
using System.Linq;
using QuantConnect.Data;
namespace QuantConnect.Report
{
///
/// Rolling window functions
///
public static class Rolling
{
private static readonly IRiskFreeInterestRateModel _interestRateProvider = new InterestRateProvider();
///
/// Calculate the rolling beta with the given window size (in days)
///
/// The performance points you want to measure beta for
/// The benchmark/points you want to calculate beta with
/// Days/window to lookback
/// Rolling beta
public static Series Beta(SortedList performancePoints, SortedList benchmarkPoints, int windowSize = 132)
{
var dailyDictionary = StatisticsBuilder.PreprocessPerformanceValues(performancePoints.Select(x => new KeyValuePair(x.Key, (decimal)x.Value)));
var dailyReturnsSeries = new Series(dailyDictionary);
Series benchmarkReturns;
if (benchmarkPoints.Count != 0)
{
var benchmarkReturnsDictionary = StatisticsBuilder.CreateBenchmarkDifferences(benchmarkPoints.Select(x => new KeyValuePair(x.Key, (decimal)x.Value)), benchmarkPoints.Keys.First(), benchmarkPoints.Keys.Last());
benchmarkReturns = new Series(benchmarkReturnsDictionary);
}
else
{
benchmarkReturns = new Series(benchmarkPoints);
}
var returns = Frame.CreateEmpty();
returns["strategy"] = dailyReturnsSeries;
returns = returns.Join("benchmark", benchmarkReturns)
.FillMissing(Direction.Forward)
.DropSparseRows();
var correlation = returns
.Window(windowSize)
.SelectValues(x => Correlation.Pearson(x["strategy"].Values, x["benchmark"].Values));
var portfolioStandardDeviation = dailyReturnsSeries.Window(windowSize).SelectValues(s => s.StdDev());
var benchmarkStandardDeviation = benchmarkReturns.Window(windowSize).SelectValues(s => s.StdDev());
return (correlation * (portfolioStandardDeviation / benchmarkStandardDeviation))
.FillMissing(Direction.Forward)
.DropMissing();
}
///
/// Get the rolling sharpe of the given series with a lookback of . The risk free rate is adjustable
///
/// Equity curve to calculate rolling sharpe for
/// Number of months to calculate the rolling period for
/// The number of trading days per year to increase result of Annual statistics
/// Rolling sharpe ratio
public static Series Sharpe(Series equityCurve, int months, int tradingDayPerYear)
{
var riskFreeRate = (double)_interestRateProvider.GetAverageRiskFreeRate(equityCurve.Keys);
if (equityCurve.IsEmpty)
{
return equityCurve;
}
var dailyReturns = equityCurve.ResampleEquivalence(date => date.Date, s => s.LastValue())
.PercentChange();
var rollingSharpeData = new List>();
var firstDate = equityCurve.FirstKey();
foreach (var date in equityCurve.Keys)
{
var nMonthsAgo = date.AddMonths(-months);
if (nMonthsAgo < firstDate)
{
continue;
}
var algoPerformanceLookback = dailyReturns.Between(nMonthsAgo, date);
rollingSharpeData.Add(
new KeyValuePair(
date,
Statistics.Statistics.SharpeRatio(algoPerformanceLookback.Values.ToList(), riskFreeRate, tradingDayPerYear)
)
);
}
return new Series(rollingSharpeData.Select(kvp => kvp.Key), rollingSharpeData.Select(kvp => kvp.Value));
}
}
}