/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using Deedle;
using System;
using System.Collections.Generic;
using System.Linq;
namespace QuantConnect.Report
{
///
/// Utility extension methods for Deedle series/frames
///
public static class DeedleUtil
{
///
/// Calculates the cumulative sum for the given series
///
/// Series to calculate cumulative sum for
/// Cumulative sum in series form
public static Series CumulativeSum(this Series input)
{
if (input.IsEmpty)
{
return input;
}
var prev = 0.0;
return input.SelectValues(current =>
{
var sum = prev + current;
prev = sum;
return sum;
});
}
///
/// Calculates the cumulative product of the series. This is equal to the python pandas method: `df.cumprod()`
///
/// Input series
/// Cumulative product
public static Series CumulativeProduct(this Series input)
{
if (input.IsEmpty)
{
return input;
}
var prev = 1.0;
return input.SelectValues(current =>
{
var product = prev * current;
prev = product;
return product;
});
}
///
/// Calculates the cumulative max of the series. This is equal to the python pandas method: `df.cummax()`.
///
///
///
public static Series CumulativeMax(this Series input)
{
if (input.IsEmpty)
{
return input;
}
var prevMax = double.NegativeInfinity;
var values = new List();
foreach (var point in input.Values)
{
if (point > prevMax)
{
prevMax = point;
}
values.Add(prevMax);
}
return new Series(input.Keys, values);
}
///
/// Calculates the percentage change from the previous value to the current
///
/// Series to calculate percentage change for
/// Percentage change in series form
/// Equivalent to `df.pct_change()`
public static Series PercentChange(this Series input)
{
if (input.IsEmpty)
{
return input;
}
var inputShifted = input.Shift(1);
return (input - inputShifted) / inputShifted;
}
///
/// Calculates the cumulative returns series of the given input equity curve
///
/// Equity curve series
/// Cumulative returns over time
public static Series CumulativeReturns(this Series input)
{
if (input.IsEmpty)
{
return input;
}
return (input.PercentChange()
.Where(kvp => !double.IsInfinity(kvp.Value)) + 1)
.CumulativeProduct() - 1;
}
///
/// Calculates the total returns over a period of time for the given input
///
/// Equity curve series
/// Total returns over time
public static double TotalReturns(this Series input)
{
var returns = input.CumulativeReturns();
if (returns.IsEmpty)
{
return double.NaN;
}
return returns.LastValue();
}
///
/// Drops sparse columns only if every value is `missing` in the column
///
/// Frame row key
/// Frame column key
/// Data Frame
/// new Frame with sparse columns dropped
/// Equivalent to `df.dropna(axis=1, how='all')`
public static Frame DropSparseColumnsAll(this Frame frame)
{
var newFrame = frame.Clone();
foreach (var key in frame.ColumnKeys)
{
if (newFrame[key].DropMissing().ValueCount == 0)
{
newFrame.DropColumn(key);
}
}
return newFrame;
}
///
/// Drops sparse rows if and only if every value is `missing` in the Frame
///
/// Frame row key
/// Frame column key
/// Data Frame
/// new Frame with sparse rows dropped
/// Equivalent to `df.dropna(how='all')`
public static Frame DropSparseRowsAll(this Frame frame)
{
if (frame.ColumnKeys.Count() == 0)
{
return Frame.CreateEmpty();
}
var newFrame = frame.Clone().Transpose();
foreach (var key in frame.RowKeys)
{
if (newFrame[key].DropMissing().ValueCount == 0)
{
newFrame.DropColumn(key);
}
}
return newFrame.Transpose();
}
}
}