/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using System.Collections.Generic;
using System.Linq;
using Python.Runtime;
using QuantConnect.Algorithm.Framework.Alphas;
using QuantConnect.Data.UniverseSelection;
using QuantConnect.Interfaces;
using QuantConnect.Scheduling;
namespace QuantConnect.Algorithm.Framework.Portfolio
{
///
/// Provides a base class for portfolio construction models
///
public class PortfolioConstructionModel : IPortfolioConstructionModel
{
private Func _rebalancingFunc;
private DateTime? _rebalancingTime;
private bool _securityChanges;
///
/// True if should rebalance portfolio on security changes. True by default
///
public virtual bool RebalanceOnSecurityChanges { get; set; } = true;
///
/// True if should rebalance portfolio on new insights or expiration of insights. True by default
///
public virtual bool RebalanceOnInsightChanges { get; set; } = true;
///
/// The algorithm instance
///
protected IAlgorithm Algorithm { get; private set; }
///
/// This is required due to a limitation in PythonNet to resolved overriden methods.
/// When Python calls a C# method that calls a method that's overriden in python it won't
/// run the python implementation unless the call is performed through python too.
///
protected PortfolioConstructionModelPythonWrapper PythonWrapper { get; set; }
///
/// Initialize a new instance of
///
/// For a given algorithm UTC DateTime returns the next expected rebalance time
/// or null if unknown, in which case the function will be called again in the next loop. Returning current time
/// will trigger rebalance. If null will be ignored
public PortfolioConstructionModel(Func rebalancingFunc)
{
_rebalancingFunc = rebalancingFunc;
}
///
/// Initialize a new instance of
///
/// For a given algorithm UTC DateTime returns the next expected rebalance UTC time.
/// Returning current time will trigger rebalance. If null will be ignored
public PortfolioConstructionModel(Func rebalancingFunc = null)
: this(rebalancingFunc != null ? (Func)(timeUtc => rebalancingFunc(timeUtc)) : null)
{
}
///
/// Used to set the instance if any
///
protected void SetPythonWrapper(PortfolioConstructionModelPythonWrapper pythonWrapper)
{
PythonWrapper = pythonWrapper;
}
///
/// Create portfolio targets from the specified insights
///
/// The algorithm instance
/// The insights to create portfolio targets from
/// An enumerable of portfolio targets to be sent to the execution model
public virtual IEnumerable CreateTargets(QCAlgorithm algorithm, Insight[] insights)
{
Algorithm = algorithm;
if (!(PythonWrapper?.IsRebalanceDue(insights, algorithm.UtcTime)
?? IsRebalanceDue(insights, algorithm.UtcTime)))
{
return Enumerable.Empty();
}
var targets = new List();
var lastActiveInsights = PythonWrapper?.GetTargetInsights()
?? GetTargetInsights();
var errorSymbols = new HashSet();
// Determine target percent for the given insights
var percents = PythonWrapper?.DetermineTargetPercent(lastActiveInsights)
?? DetermineTargetPercent(lastActiveInsights);
foreach (var insight in lastActiveInsights)
{
if (!percents.TryGetValue(insight, out var percent))
{
continue;
}
var target = PortfolioTarget.Percent(algorithm, insight.Symbol, percent);
if (target != null)
{
targets.Add(target);
}
else
{
errorSymbols.Add(insight.Symbol);
}
}
// Get expired insights and create flatten targets for each symbol
var expiredInsights = Algorithm.Insights.RemoveExpiredInsights(algorithm.UtcTime);
var expiredTargets = from insight in expiredInsights
group insight.Symbol by insight.Symbol into g
where !Algorithm.Insights.HasActiveInsights(g.Key, algorithm.UtcTime) && !errorSymbols.Contains(g.Key)
select new PortfolioTarget(g.Key, 0);
targets.AddRange(expiredTargets);
return targets;
}
///
/// Event fired each time the we add/remove securities from the data feed
///
/// The algorithm instance that experienced the change in securities
/// The security additions and removals from the algorithm
public virtual void OnSecuritiesChanged(QCAlgorithm algorithm, SecurityChanges changes)
{
Algorithm ??= algorithm;
_securityChanges = changes != SecurityChanges.None;
// Get removed symbol and invalidate them in the insight collection
var removedSymbols = changes.RemovedSecurities.Select(x => x.Symbol);
algorithm?.Insights.Expire(removedSymbols);
}
///
/// Gets the target insights to calculate a portfolio target percent for
///
/// An enumerable of the target insights
protected virtual List GetTargetInsights()
{
// Validate we should create a target for this insight
bool IsValidInsight(Insight insight) => PythonWrapper?.ShouldCreateTargetForInsight(insight)
?? ShouldCreateTargetForInsight(insight);
// Get insight that haven't expired of each symbol that is still in the universe
var activeInsights = Algorithm.Insights.GetActiveInsights(Algorithm.UtcTime).Where(IsValidInsight);
// Get the last generated active insight for each symbol
return (from insight in activeInsights
group insight by insight.Symbol into g
select g.OrderBy(x => x.GeneratedTimeUtc).Last()).ToList();
}
///
/// Method that will determine if the portfolio construction model should create a
/// target for this insight
///
/// The insight to create a target for
/// True if the portfolio should create a target for the insight
protected virtual bool ShouldCreateTargetForInsight(Insight insight)
{
return true;
}
///
/// Will determine the target percent for each insight
///
/// The active insights to generate a target for
/// A target percent for each insight
protected virtual Dictionary DetermineTargetPercent(List activeInsights)
{
throw new NotImplementedException("Types deriving from 'PortfolioConstructionModel' must implement the 'Dictionary DetermineTargetPercent(ICollection)' method.");
}
///
/// Python helper method to set the rebalancing function.
/// This is required due to a python net limitation not being able to use the base type constructor, and also because
/// when python algorithms use C# portfolio construction models, it can't convert python methods into func nor resolve
/// the correct constructor for the date rules, timespan parameter.
/// For performance we prefer python algorithms using the C# implementation
///
/// Rebalancing func or if a date rule, timedelta will be converted into func.
/// For a given algorithm UTC DateTime the func returns the next expected rebalance time
/// or null if unknown, in which case the function will be called again in the next loop. Returning current time
/// will trigger rebalance. If null will be ignored
protected void SetRebalancingFunc(PyObject rebalance)
{
IDateRule dateRules;
TimeSpan timeSpan;
if (rebalance.TryConvert(out dateRules))
{
_rebalancingFunc = dateRules.ToFunc();
}
else if (!rebalance.TryConvertToDelegate(out _rebalancingFunc))
{
try
{
using (Py.GIL())
{
// try convert does not work for timespan
timeSpan = rebalance.As();
if (timeSpan != default(TimeSpan))
{
_rebalancingFunc = time => time.Add(timeSpan);
}
}
}
catch
{
_rebalancingFunc = null;
}
}
}
///
/// Determines if the portfolio should be rebalanced base on the provided rebalancing func,
/// if any security change have been taken place or if an insight has expired or a new insight arrived
/// If the rebalancing function has not been provided will return true.
///
/// The insights to create portfolio targets from
/// The current algorithm UTC time
/// True if should rebalance
protected virtual bool IsRebalanceDue(Insight[] insights, DateTime algorithmUtc)
{
// if there is no rebalance func set, just return true but refresh state
// just in case the rebalance func is going to be set.
if (_rebalancingFunc == null)
{
RefreshRebalance(algorithmUtc);
return true;
}
// we always get the next expiry time
// we don't know if a new insight was added or removed
var nextInsightExpiryTime = Algorithm.Insights.GetNextExpiryTime();
if (_rebalancingTime == null)
{
_rebalancingTime = _rebalancingFunc(algorithmUtc);
if (_rebalancingTime != null && _rebalancingTime <= algorithmUtc)
{
// if the rebalancing time stopped being null and is current time
// we will ask for the next rebalance time in the next loop.
// we don't want to call the '_rebalancingFunc' twice in the same loop,
// since its internal state machine will probably be in the same state.
_rebalancingTime = null;
_securityChanges = false;
return true;
}
}
if (_rebalancingTime != null && _rebalancingTime <= algorithmUtc
|| RebalanceOnSecurityChanges && _securityChanges
|| RebalanceOnInsightChanges
&& (insights.Length != 0
|| nextInsightExpiryTime != null && nextInsightExpiryTime < algorithmUtc))
{
RefreshRebalance(algorithmUtc);
return true;
}
return false;
}
///
/// Refresh the next rebalance time and clears the security changes flag
///
protected void RefreshRebalance(DateTime algorithmUtc)
{
if (_rebalancingFunc != null)
{
_rebalancingTime = _rebalancingFunc(algorithmUtc);
}
_securityChanges = false;
}
///
/// Helper class that can be used by the different
/// implementations to filter instances with an invalid
/// value based on the
///
/// The algorithm instance
/// The insight collection to filter
/// Returns a new array of insights removing invalid ones
protected static Insight[] FilterInvalidInsightMagnitude(IAlgorithm algorithm, Insight[] insights)
{
var result = insights.Where(insight =>
{
if (!insight.Magnitude.HasValue || insight.Magnitude == 0)
{
return true;
}
var absoluteMagnitude = Math.Abs(insight.Magnitude.Value);
if (absoluteMagnitude > (double)algorithm.Settings.MaxAbsolutePortfolioTargetPercentage
|| absoluteMagnitude < (double)algorithm.Settings.MinAbsolutePortfolioTargetPercentage)
{
algorithm.Error("PortfolioConstructionModel.FilterInvalidInsightMagnitude():" +
$"The insight target Magnitude: {insight.Magnitude}, will not comply with the current " +
$"'Algorithm.Settings' 'MaxAbsolutePortfolioTargetPercentage': {algorithm.Settings.MaxAbsolutePortfolioTargetPercentage}" +
$" or 'MinAbsolutePortfolioTargetPercentage': {algorithm.Settings.MinAbsolutePortfolioTargetPercentage}. Skipping insight."
);
return false;
}
return true;
});
return result.ToArray();
}
}
}