# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from AlgorithmImports import * ### ### This algorithm demonstrates using the history provider to retrieve data ### to warm up indicators before data is received. ### ### ### ### ### class WarmupHistoryAlgorithm(QCAlgorithm): def initialize(self): '''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' self.set_start_date(2014,5,2) #Set Start Date self.set_end_date(2014,5,2) #Set End Date self.set_cash(100000) #Set Strategy Cash # Find more symbols here: http://quantconnect.com/data forex = self.add_forex("EURUSD", Resolution.SECOND) forex = self.add_forex("NZDUSD", Resolution.SECOND) fast_period = 60 slow_period = 3600 self.fast = self.ema("EURUSD", fast_period) self.slow = self.ema("EURUSD", slow_period) # "slow_period + 1" because rolling window waits for one to fall off the back to be considered ready # History method returns a dict with a pandas.data_frame history = self.history(["EURUSD", "NZDUSD"], slow_period + 1) # prints out the tail of the dataframe self.log(str(history.loc["EURUSD"].tail())) self.log(str(history.loc["NZDUSD"].tail())) for index, row in history.loc["EURUSD"].iterrows(): self.fast.update(index, row["close"]) self.slow.update(index, row["close"]) self.log("FAST {0} READY. Samples: {1}".format("IS" if self.fast.is_ready else "IS NOT", self.fast.samples)) self.log("SLOW {0} READY. Samples: {1}".format("IS" if self.slow.is_ready else "IS NOT", self.slow.samples)) def on_data(self, data): '''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.''' if self.fast.current.value > self.slow.current.value: self.set_holdings("EURUSD", 1) else: self.set_holdings("EURUSD", -1)