# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from AlgorithmImports import * from QuantConnect.Data.Custom.Tiingo import TiingoPrice ### ### This example algorithm shows how to import and use Tiingo daily prices data. ### ### ### ### ### class TiingoPriceAlgorithm(QCAlgorithm): def initialize(self): # Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized. self.set_start_date(2017, 1, 1) self.set_end_date(2017, 12, 31) self.set_cash(100000) # Set your Tiingo API Token here Tiingo.set_auth_code("my-tiingo-api-token") self._equity = self.add_equity("AAPL").symbol self._aapl = self.add_data(TiingoPrice, self._equity, Resolution.DAILY).symbol self._ema_fast = self.ema(self._equity, 5) self._ema_slow = self.ema(self._equity, 10) def on_data(self, slice): # OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. if not slice.contains_key(self._equity): return # Extract Tiingo data from the slice row = slice[self._equity] if not row: return if self._ema_fast.is_ready and self._ema_slow.is_ready: self.log(f"{self.time} - {row.symbol.value} - {row.close} {row.value} {row.price} - EmaFast:{self._ema_fast} - EmaSlow:{self._ema_slow}") # Simple EMA cross if not self.portfolio.invested and self._ema_fast > self._ema_slow: self.set_holdings(self._equity, 1) elif self.portfolio.invested and self._ema_fast < self._ema_slow: self.liquidate(self._equity)