# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from AlgorithmImports import * import talib class CalibratedResistanceAtmosphericScrubbers(QCAlgorithm): def initialize(self): self.set_start_date(2020, 1, 2) self.set_end_date(2020, 1, 6) self.set_cash(100000) self.add_equity("SPY", Resolution.HOUR) self.rolling_window = pd.DataFrame() self.dema_period = 3 self.sma_period = 3 self.wma_period = 3 self.window_size = self.dema_period * 2 self.set_warm_up(self.window_size) def on_data(self, data): if "SPY" not in data.bars: return close = data["SPY"].close if self.is_warming_up: # Add latest close to rolling window row = pd.DataFrame({"close": [close]}, index=[data.time]) self.rolling_window = pd.concat([self.rolling_window, row]).iloc[-self.window_size:] # If we have enough closing data to start calculating indicators... if self.rolling_window.shape[0] == self.window_size: closes = self.rolling_window['close'].values # Add indicator columns to DataFrame self.rolling_window['DEMA'] = talib.DEMA(closes, self.dema_period) self.rolling_window['EMA'] = talib.EMA(closes, self.sma_period) self.rolling_window['WMA'] = talib.WMA(closes, self.wma_period) return closes = np.append(self.rolling_window['close'].values, close)[-self.window_size:] # Update talib indicators time series with the latest close row = pd.DataFrame({"close": close, "DEMA" : talib.DEMA(closes, self.dema_period)[-1], "EMA" : talib.EMA(closes, self.sma_period)[-1], "WMA" : talib.WMA(closes, self.wma_period)[-1]}, index=[data.time]) self.rolling_window = pd.concat([self.rolling_window, row]).iloc[-self.window_size:] def on_end_of_algorithm(self): self.log(f"\nRolling Window:\n{self.rolling_window.to_string()}\n") self.log(f"\nLatest Values:\n{self.rolling_window.iloc[-1].to_string()}\n")