# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from AlgorithmImports import *
from Alphas.RsiAlphaModel import RsiAlphaModel
from Portfolio.EqualWeightingPortfolioConstructionModel import EqualWeightingPortfolioConstructionModel
from Execution.SpreadExecutionModel import SpreadExecutionModel
###
### Regression algorithm for the SpreadExecutionModel.
### This algorithm shows how the execution model works to
### submit orders only when the price is on desirably tight spread.
###
###
###
###
class SpreadExecutionModelRegressionAlgorithm(QCAlgorithm):
'''Regression algorithm for the SpreadExecutionModel.
This algorithm shows how the execution model works to
submit orders only when the price is on desirably tight spread.'''
def initialize(self):
self.set_start_date(2013,10,7)
self.set_end_date(2013,10,11)
self.set_universe_selection(ManualUniverseSelectionModel([
Symbol.create('AIG', SecurityType.EQUITY, Market.USA),
Symbol.create('BAC', SecurityType.EQUITY, Market.USA),
Symbol.create('IBM', SecurityType.EQUITY, Market.USA),
Symbol.create('SPY', SecurityType.EQUITY, Market.USA)
]))
# using hourly rsi to generate more insights
self.set_alpha(RsiAlphaModel(14, Resolution.HOUR))
self.set_portfolio_construction(EqualWeightingPortfolioConstructionModel())
self.set_execution(SpreadExecutionModel())
self.insights_generated += self.on_insights_generated
def on_insights_generated(self, algorithm, data):
self.log(f"{self.time}: {', '.join(str(x) for x in data.insights)}")
def on_order_event(self, order_event):
self.log(f"{self.time}: {order_event}")