# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from AlgorithmImports import * from Alphas.RsiAlphaModel import RsiAlphaModel from Portfolio.EqualWeightingPortfolioConstructionModel import EqualWeightingPortfolioConstructionModel from Execution.SpreadExecutionModel import SpreadExecutionModel ### ### Regression algorithm for the SpreadExecutionModel. ### This algorithm shows how the execution model works to ### submit orders only when the price is on desirably tight spread. ### ### ### ### class SpreadExecutionModelRegressionAlgorithm(QCAlgorithm): '''Regression algorithm for the SpreadExecutionModel. This algorithm shows how the execution model works to submit orders only when the price is on desirably tight spread.''' def initialize(self): self.set_start_date(2013,10,7) self.set_end_date(2013,10,11) self.set_universe_selection(ManualUniverseSelectionModel([ Symbol.create('AIG', SecurityType.EQUITY, Market.USA), Symbol.create('BAC', SecurityType.EQUITY, Market.USA), Symbol.create('IBM', SecurityType.EQUITY, Market.USA), Symbol.create('SPY', SecurityType.EQUITY, Market.USA) ])) # using hourly rsi to generate more insights self.set_alpha(RsiAlphaModel(14, Resolution.HOUR)) self.set_portfolio_construction(EqualWeightingPortfolioConstructionModel()) self.set_execution(SpreadExecutionModel()) self.insights_generated += self.on_insights_generated def on_insights_generated(self, algorithm, data): self.log(f"{self.time}: {', '.join(str(x) for x in data.insights)}") def on_order_event(self, order_event): self.log(f"{self.time}: {order_event}")