# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from AlgorithmImports import * class SmaCrossUniverseSelectionAlgorithm(QCAlgorithm): '''Provides an example where WarmUpIndicator method is used to warm up indicators after their security is added and before (Universe Selection scenario)''' _count = 10 _tolerance = 0.01 _target_percent = 1 / _count _averages = dict() def initialize(self) -> None: self.universe_settings.leverage = 2 self.universe_settings.resolution = Resolution.DAILY self.set_start_date(2018, 1, 1) self.set_end_date(2019, 1, 1) self.set_cash(1000000) self.settings.automatic_indicator_warm_up = True ibm = self.add_equity("IBM", Resolution.HOUR).symbol ibm_sma = self.sma(ibm, 40) self.log(f"{ibm_sma.name}: {ibm_sma.current.time} - {ibm_sma}. IsReady? {ibm_sma.is_ready}") spy = self.add_equity("SPY", Resolution.HOUR).symbol spy_sma = self.sma(spy, 10) # Data point indicator spy_atr = self.atr(spy, 10,) # Bar indicator spy_vwap = self.vwap(spy, 10) # TradeBar indicator self.log(f"SPY - Is ready? SMA: {spy_sma.is_ready}, ATR: {spy_atr.is_ready}, VWAP: {spy_vwap.is_ready}") eur = self.add_forex("EURUSD", Resolution.HOUR).symbol eur_sma = self.sma(eur, 20, Resolution.DAILY) eur_atr = self.atr(eur, 20, MovingAverageType.SIMPLE, Resolution.DAILY) self.log(f"EURUSD - Is ready? SMA: {eur_sma.is_ready}, ATR: {eur_atr.is_ready}") self.add_universe(self.coarse_sma_selector) # Since the indicators are ready, we will receive error messages # reporting that the algorithm manager is trying to add old information self.set_warm_up(10) def coarse_sma_selector(self, coarse: list[Fundamental]) -> list[Symbol]: score = dict() for cf in coarse: if not cf.has_fundamental_data: continue symbol = cf.symbol price = cf.adjusted_price # grab the SMA instance for this symbol avg = self._averages.setdefault(symbol, SimpleMovingAverage(100)) self.warm_up_indicator(symbol, avg, Resolution.DAILY) # Update returns true when the indicators are ready, so don't accept until they are if avg.update(cf.end_time, price): value = avg.current.value # only pick symbols who have their price over their 100 day sma if value > price * self._tolerance: score[symbol] = (value - price) / ((value + price) / 2) # prefer symbols with a larger delta by percentage between the two _averages sorted_score = sorted(score.items(), key=lambda kvp: kvp[1], reverse=True) return [x[0] for x in sorted_score[:self._count]] def on_securities_changed(self, changes: SecurityChanges) -> None: for security in changes.removed_securities: if security.invested: self.liquidate(security.symbol) for security in changes.added_securities: self.set_holdings(security.symbol, self._target_percent)