# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from AlgorithmImports import * from Portfolio.EqualWeightingPortfolioConstructionModel import EqualWeightingPortfolioConstructionModel from Alphas.ConstantAlphaModel import ConstantAlphaModel from Execution.ImmediateExecutionModel import ImmediateExecutionModel from Risk.MaximumSectorExposureRiskManagementModel import MaximumSectorExposureRiskManagementModel ### ### This example algorithm defines its own custom coarse/fine fundamental selection model ### with equally weighted portfolio and a maximum sector exposure. ### class SectorExposureRiskFrameworkAlgorithm(QCAlgorithm): '''This example algorithm defines its own custom coarse/fine fundamental selection model ### with equally weighted portfolio and a maximum sector exposure.''' def initialize(self): # Set requested data resolution self.universe_settings.resolution = Resolution.DAILY self.set_start_date(2014, 3, 25) self.set_end_date(2014, 4, 7) self.set_cash(100000) # set algorithm framework models self.set_universe_selection(FineFundamentalUniverseSelectionModel(self.select_coarse, self.select_fine)) self.set_alpha(ConstantAlphaModel(InsightType.PRICE, InsightDirection.UP, timedelta(1))) self.set_portfolio_construction(EqualWeightingPortfolioConstructionModel()) self.set_risk_management(MaximumSectorExposureRiskManagementModel()) def on_order_event(self, order_event): if order_event.status == OrderStatus.FILLED: self.debug(f"Order event: {order_event}. Holding value: {self.securities[order_event.symbol].holdings.absolute_holdings_value}") def select_coarse(self, coarse): tickers = ["AAPL", "AIG", "IBM"] if self.time.date() < date(2014, 4, 1) else [ "GOOG", "BAC", "SPY" ] return [Symbol.create(x, SecurityType.EQUITY, Market.USA) for x in tickers] def select_fine(self, fine): return [f.symbol for f in fine]