# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from AlgorithmImports import * ### ### Algorithm used for regression tests purposes ### ### class RegressionAlgorithm(QCAlgorithm): def initialize(self): '''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' self.set_start_date(2013,10,7) #Set Start Date self.set_end_date(2013,10,11) #Set End Date self.set_cash(10000000) #Set Strategy Cash # Find more symbols here: http://quantconnect.com/data self.add_equity("SPY", Resolution.TICK) self.add_equity("BAC", Resolution.MINUTE) self.add_equity("AIG", Resolution.HOUR) self.add_equity("IBM", Resolution.DAILY) self.__last_trade_ticks = self.start_date self.__last_trade_trade_bars = self.__last_trade_ticks self.__trade_every = timedelta(minutes=1) def on_data(self, data): '''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.''' if self.time - self.__last_trade_trade_bars < self.__trade_every: return self.__last_trade_trade_bars = self.time for kvp in data.bars: bar = kvp.Value if bar.is_fill_forward: continue symbol = kvp.key holdings = self.portfolio[symbol] if not holdings.invested: self.market_order(symbol, 10) else: self.market_order(symbol, -holdings.quantity)