# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from AlgorithmImports import * from Alphas.PearsonCorrelationPairsTradingAlphaModel import PearsonCorrelationPairsTradingAlphaModel ### ### Framework algorithm that uses the PearsonCorrelationPairsTradingAlphaModel. ### This model extendes BasePairsTradingAlphaModel and uses Pearson correlation ### to rank the pairs trading candidates and use the best candidate to trade. ### class PearsonCorrelationPairsTradingAlphaModelFrameworkAlgorithm(QCAlgorithm): '''Framework algorithm that uses the PearsonCorrelationPairsTradingAlphaModel. This model extendes BasePairsTradingAlphaModel and uses Pearson correlation to rank the pairs trading candidates and use the best candidate to trade.''' def initialize(self): self.set_start_date(2013,10,7) self.set_end_date(2013,10,11) symbols = [Symbol.create(ticker, SecurityType.EQUITY, Market.USA) for ticker in ["SPY", "AIG", "BAC", "IBM"]] # Manually add SPY and AIG when the algorithm starts self.set_universe_selection(ManualUniverseSelectionModel(symbols[:2])) # At midnight, add all securities every day except on the last data # With this procedure, the Alpha Model will experience multiple universe changes self.add_universe_selection(ScheduledUniverseSelectionModel( self.date_rules.every_day(), self.time_rules.midnight, lambda dt: symbols if dt.day <= (self.end_date - timedelta(1)).day else [])) self.set_alpha(PearsonCorrelationPairsTradingAlphaModel(252, Resolution.DAILY)) self.set_portfolio_construction(EqualWeightingPortfolioConstructionModel()) self.set_execution(ImmediateExecutionModel()) self.set_risk_management(NullRiskManagementModel()) def on_end_of_algorithm(self) -> None: # We have removed all securities from the universe. The Alpha Model should remove the consolidator consolidator_count = sum(s.consolidators.count for s in self.subscription_manager.subscriptions) if consolidator_count > 0: raise AssertionError(f"The number of consolidator should be zero. Actual: {consolidator_count}")