# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from AlgorithmImports import * class OptionIndicatorsRegressionAlgorithm(QCAlgorithm): def initialize(self): self.set_start_date(2014, 6, 5) self.set_end_date(2014, 6, 7) self.set_cash(100000) self.add_equity("AAPL", Resolution.MINUTE) option = Symbol.create_option("AAPL", Market.USA, OptionStyle.AMERICAN, OptionRight.PUT, 505, datetime(2014, 6, 27)) self.add_option_contract(option, Resolution.MINUTE) self.implied_volatility = self.iv(option, option_model = OptionPricingModelType.BLACK_SCHOLES) self.delta = self.d(option, option_model = OptionPricingModelType.BINOMIAL_COX_ROSS_RUBINSTEIN, iv_model = OptionPricingModelType.BLACK_SCHOLES) self.gamma = self.g(option, option_model = OptionPricingModelType.FORWARD_TREE, iv_model = OptionPricingModelType.BLACK_SCHOLES) self.vega = self.v(option, option_model = OptionPricingModelType.FORWARD_TREE, iv_model = OptionPricingModelType.BLACK_SCHOLES) self.theta = self.t(option, option_model = OptionPricingModelType.FORWARD_TREE, iv_model = OptionPricingModelType.BLACK_SCHOLES) self.rho = self.r(option, option_model = OptionPricingModelType.FORWARD_TREE, iv_model = OptionPricingModelType.BLACK_SCHOLES) def on_end_of_algorithm(self): if self.implied_volatility.current.value == 0 or self.delta.current.value == 0 or self.gamma.current.value == 0 \ or self.vega.current.value == 0 or self.theta.current.value == 0 or self.rho.current.value == 0: raise AssertionError("Expected IV/greeks calculated") self.debug(f"""Implied Volatility: {self.implied_volatility.current.value}, Delta: {self.delta.current.value}, Gamma: {self.gamma.current.value}, Vega: {self.vega.current.value}, Theta: {self.theta.current.value}, Rho: {self.rho.current.value}""")