# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from AlgorithmImports import * from Portfolio.MeanVarianceOptimizationPortfolioConstructionModel import * ### ### Mean Variance Optimization algorithm ### Uses the HistoricalReturnsAlphaModel and the MeanVarianceOptimizationPortfolioConstructionModel ### to create an algorithm that rebalances the portfolio according to modern portfolio theory ### ### ### ### class MeanVarianceOptimizationFrameworkAlgorithm(QCAlgorithm): '''Mean Variance Optimization algorithm.''' def initialize(self): # Set requested data resolution self.universe_settings.resolution = Resolution.MINUTE self.settings.rebalance_portfolio_on_insight_changes = False self.set_start_date(2013,10,7) #Set Start Date self.set_end_date(2013,10,11) #Set End Date self.set_cash(100000) #Set Strategy Cash self._symbols = [ Symbol.create(x, SecurityType.EQUITY, Market.USA) for x in [ 'AIG', 'BAC', 'IBM', 'SPY' ] ] # set algorithm framework models self.set_universe_selection(CoarseFundamentalUniverseSelectionModel(self.coarse_selector)) self.set_alpha(HistoricalReturnsAlphaModel(resolution = Resolution.DAILY)) self.set_portfolio_construction(MeanVarianceOptimizationPortfolioConstructionModel()) self.set_execution(ImmediateExecutionModel()) self.set_risk_management(NullRiskManagementModel()) def coarse_selector(self, coarse): # Drops SPY after the 8th last = 3 if self.time.day > 8 else len(self._symbols) return self._symbols[0:last] def on_order_event(self, order_event): if order_event.status == OrderStatus.FILLED: self.log(str(order_event))