# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from AlgorithmImports import * from Portfolio.EqualWeightingPortfolioConstructionModel import EqualWeightingPortfolioConstructionModel from Execution.ImmediateExecutionModel import ImmediateExecutionModel from Selection.ManualUniverseSelectionModel import ManualUniverseSelectionModel ### ### Basic template framework algorithm uses framework components to define the algorithm. ### Shows EqualWeightingPortfolioConstructionModel.long_only() application ### ### ### ### class LongOnlyAlphaStreamAlgorithm(QCAlgorithm): def initialize(self): # 1. Required: self.set_start_date(2013, 10, 7) self.set_end_date(2013, 10, 11) # 2. Required: Alpha Streams Models: self.set_brokerage_model(BrokerageName.ALPHA_STREAMS) # 3. Required: Significant AUM Capacity self.set_cash(1000000) # Only SPY will be traded self.set_portfolio_construction(EqualWeightingPortfolioConstructionModel(Resolution.DAILY, PortfolioBias.LONG)) self.set_execution(ImmediateExecutionModel()) # Order margin value has to have a minimum of 0.5% of Portfolio value, allows filtering out small trades and reduce fees. # Commented so regression algorithm is more sensitive #self.settings.minimum_order_margin_portfolio_percentage = 0.005 # Set algorithm framework models self.set_universe_selection(ManualUniverseSelectionModel( [Symbol.create(x, SecurityType.EQUITY, Market.USA) for x in ["SPY", "IBM"]])) def on_data(self, slice): if self.portfolio.invested: return self.emit_insights( [ Insight.price("SPY", timedelta(1), InsightDirection.UP), Insight.price("IBM", timedelta(1), InsightDirection.DOWN) ]) def on_order_event(self, order_event): if order_event.status == OrderStatus.FILLED: if self.securities[order_event.symbol].holdings.is_short: raise ValueError("Invalid position, should not be short") self.debug(order_event)