# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from AlgorithmImports import * import itertools from OptionStrategyFactoryMethodsBaseAlgorithm import * ### ### This algorithm demonstrate how to use OptionStrategies helper class to batch send orders for common strategies. ### In this case, the algorithm tests the Butterfly Call and Short Butterfly Call strategies. ### class LongAndShortButterflyCallStrategiesAlgorithm(OptionStrategyFactoryMethodsBaseAlgorithm): def expected_orders_count(self) -> int: return 6 def trade_strategy(self, chain: OptionChain, option_symbol: Symbol): call_contracts = (contract for contract in chain if contract.right == OptionRight.CALL) for expiry, group in itertools.groupby(call_contracts, lambda x: x.expiry): contracts = list(group) if len(contracts) < 3: continue strikes = sorted([contract.strike for contract in contracts]) atm_strike = min(strikes, key=lambda strike: abs(strike - chain.underlying.price)) spread = min(atm_strike - strikes[0], strikes[-1] - atm_strike) itm_strike = atm_strike - spread otm_strike = atm_strike + spread if otm_strike in strikes and itm_strike in strikes: # Ready to trade self._butterfly_call = OptionStrategies.butterfly_call(option_symbol, otm_strike, atm_strike, itm_strike, expiry) self._short_butterfly_call = OptionStrategies.short_butterfly_call(option_symbol, otm_strike, atm_strike, itm_strike, expiry) self.buy(self._butterfly_call, 2) return def assert_strategy_position_group(self, position_group: IPositionGroup, option_symbol: Symbol): positions = list(position_group.positions) if len(positions) != 3: raise AssertionError(f"Expected position group to have 3 positions. Actual: {len(positions)}") higher_strike = max(leg.strike for leg in self._butterfly_call.option_legs) higher_strike_position = next((position for position in positions if position.symbol.id.option_right == OptionRight.CALL and position.symbol.id.strike_price == higher_strike), None) if higher_strike_position and higher_strike_position.quantity != 2: raise AssertionError(f"Expected higher strike position quantity to be 2. Actual: {higher_strike_position.quantity}") lower_strike = min(leg.strike for leg in self._butterfly_call.option_legs) lower_strike_position = next((position for position in positions if position.symbol.id.option_right == OptionRight.CALL and position.symbol.id.strike_price == lower_strike), None) if lower_strike_position and lower_strike_position.quantity != 2: raise AssertionError(f"Expected lower strike position quantity to be 2. Actual: {lower_strike_position.quantity}") middle_strike = [leg.strike for leg in self._butterfly_call.option_legs if leg.strike < higher_strike and leg.strike > lower_strike][0] middle_strike_position = next((position for position in positions if position.symbol.id.option_right == OptionRight.CALL and position.symbol.id.strike_price == middle_strike), None) if middle_strike_position and middle_strike_position.quantity != -4: raise AssertionError(f"Expected middle strike position quantity to be -4. Actual: {middle_strike_position.quantity}") def liquidate_strategy(self): # We should be able to close the position using the inverse strategy (a short butterfly call) self.buy(self._short_butterfly_call, 2)