# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from AlgorithmImports import *
from Portfolio.EqualWeightingPortfolioConstructionModel import EqualWeightingPortfolioConstructionModel
from Execution.ImmediateExecutionModel import ImmediateExecutionModel
###
### Basic template framework algorithm uses framework components to define the algorithm.
### Liquid ETF Competition template
###
###
###
###
class LiquidETFUniverseFrameworkAlgorithm(QCAlgorithm):
'''Basic template framework algorithm uses framework components to define the algorithm.'''
def initialize(self):
# Set Start Date so that backtest has 5+ years of data
self.set_start_date(2014, 11, 1)
# No need to set End Date as the final submission will be tested
# up until the review date
# Set $1m Strategy Cash to trade significant AUM
self.set_cash(1000000)
# Add a relevant benchmark, with the default being SPY
self.set_benchmark('SPY')
# Use the Alpha Streams Brokerage Model, developed in conjunction with
# funds to model their actual fees, costs, etc.
# Please do not add any additional reality modelling, such as Slippage, Fees, Buying Power, etc.
self.set_brokerage_model(AlphaStreamsBrokerageModel())
# Use the LiquidETFUniverse with minute-resolution data
self.universe_settings.resolution = Resolution.MINUTE
self.set_universe_selection(LiquidETFUniverse())
# Optional
self.set_portfolio_construction(EqualWeightingPortfolioConstructionModel())
self.set_execution(ImmediateExecutionModel())
# List of symbols we want to trade. Set it in OnSecuritiesChanged
self._symbols = []
def on_data(self, slice):
if all([self.portfolio[x].invested for x in self._symbols]):
return
# Emit insights
insights = [Insight.price(x, timedelta(1), InsightDirection.UP)
for x in self._symbols if self.securities[x].price > 0]
if len(insights) > 0:
self.emit_insights(insights)
def on_securities_changed(self, changes):
# Set symbols as the Inverse Energy ETFs
for security in changes.added_securities:
if security.symbol in LiquidETFUniverse.ENERGY.inverse:
self._symbols.append(security.symbol)
# Print out the information about the groups
self.log(f'Energy: {LiquidETFUniverse.ENERGY}')
self.log(f'Metals: {LiquidETFUniverse.METALS}')
self.log(f'Technology: {LiquidETFUniverse.TECHNOLOGY}')
self.log(f'Treasuries: {LiquidETFUniverse.TREASURIES}')
self.log(f'Volatility: {LiquidETFUniverse.VOLATILITY}')
self.log(f'SP500Sectors: {LiquidETFUniverse.SP_500_SECTORS}')