# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from AlgorithmImports import * ### ### Regression algorithm showing how to define a custom insight scoring function and using the insight manager ### class InsightScoringRegressionAlgorithm(QCAlgorithm): '''Regression algorithm showing how to define a custom insight evaluator''' def initialize(self): ''' Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' self.set_start_date(2013,10,7) self.set_end_date(2013,10,11) symbols = [ Symbol.create("SPY", SecurityType.EQUITY, Market.USA) ] self.set_universe_selection(ManualUniverseSelectionModel(symbols)) self.set_alpha(ConstantAlphaModel(InsightType.PRICE, InsightDirection.UP, timedelta(minutes = 20), 0.025, None)) self.set_portfolio_construction(EqualWeightingPortfolioConstructionModel(Resolution.DAILY)) self.set_execution(ImmediateExecutionModel()) self.set_risk_management(MaximumDrawdownPercentPerSecurity(0.01)) # we specify a custom insight evaluator self.insights.set_insight_score_function(CustomInsightScoreFunction(self.securities)) def on_end_of_algorithm(self): all_insights = self.insights.get_insights(lambda insight: True) if len(all_insights) != 100 or len(self.insights.get_insights()) != 100: raise ValueError(f'Unexpected insight count found {all_insights.count}') if sum(1 for insight in all_insights if insight.score.magnitude == 0 or insight.score.direction == 0) < 5: raise ValueError(f'Insights not scored!') if sum(1 for insight in all_insights if insight.score.is_final_score) < 99: raise ValueError(f'Insights not finalized!') class CustomInsightScoreFunction(): def __init__(self, securities): self._securities = securities self._open_insights = {} def score(self, insight_manager, utc_time): open_insights = insight_manager.get_active_insights(utc_time) for insight in open_insights: self._open_insights[insight.id] = insight to_remove = [] for open_insight in self._open_insights.values(): security = self._securities[open_insight.symbol] open_insight.reference_value_final = security.price score = open_insight.reference_value_final - open_insight.reference_value open_insight.score.set_score(InsightScoreType.DIRECTION, score, utc_time) open_insight.score.set_score(InsightScoreType.MAGNITUDE, score * 2, utc_time) open_insight.estimated_value = score * 100 if open_insight.is_expired(utc_time): open_insight.score.finalize(utc_time) to_remove.append(open_insight) # clean up for insight_to_remove in to_remove: self._open_insights.pop(insight_to_remove.id)