# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from AlgorithmImports import *
from QuantConnect.Algorithm.CSharp import *
###
### Basic template algorithm simply initializes the date range and cash. This is a skeleton
### framework you can use for designing an algorithm.
###
###
###
###
class IndicatorSuiteAlgorithm(QCAlgorithm):
'''Demonstration algorithm of popular indicators and plotting them.'''
def initialize(self):
'''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.'''
self._symbol = "SPY"
self._symbol2 = "GOOG"
self.custom_symbol = "IBM"
self.price = 0.0
self.set_start_date(2013, 1, 1) #Set Start Date
self.set_end_date(2014, 12, 31) #Set End Date
self.set_cash(25000) #Set Strategy Cash
# Find more symbols here: http://quantconnect.com/data
self.add_equity(self._symbol, Resolution.DAILY)
self.add_equity(self._symbol2, Resolution.DAILY)
self.add_data(CustomData, self.custom_symbol, Resolution.DAILY)
# Set up default Indicators, these indicators are defined on the Value property of incoming data (except ATR and AROON which use the full TradeBar object)
self.indicators = {
'BB' : self.bb(self._symbol, 20, 1, MovingAverageType.SIMPLE, Resolution.DAILY),
'RSI' : self.rsi(self._symbol, 14, MovingAverageType.SIMPLE, Resolution.DAILY),
'EMA' : self.ema(self._symbol, 14, Resolution.DAILY),
'SMA' : self.sma(self._symbol, 14, Resolution.DAILY),
'MACD' : self.macd(self._symbol, 12, 26, 9, MovingAverageType.SIMPLE, Resolution.DAILY),
'MOM' : self.mom(self._symbol, 20, Resolution.DAILY),
'MOMP' : self.momp(self._symbol, 20, Resolution.DAILY),
'STD' : self.std(self._symbol, 20, Resolution.DAILY),
# by default if the symbol is a tradebar type then it will be the min of the low property
'MIN' : self.min(self._symbol, 14, Resolution.DAILY),
# by default if the symbol is a tradebar type then it will be the max of the high property
'MAX' : self.max(self._symbol, 14, Resolution.DAILY),
'ATR' : self.atr(self._symbol, 14, MovingAverageType.SIMPLE, Resolution.DAILY),
'AROON' : self.aroon(self._symbol, 20, Resolution.DAILY),
'B' : self.b(self._symbol, self._symbol2, 14)
}
# Here we're going to define indicators using 'selector' functions. These 'selector' functions will define what data gets sent into the indicator
# These functions have a signature like the following: decimal Selector(BaseData base_data), and can be defined like: base_data => base_data.value
# We'll define these 'selector' functions to select the Low value
#
# For more information on 'anonymous functions' see: http:#en.wikipedia.org/wiki/Anonymous_function
# https:#msdn.microsoft.com/en-us/library/bb397687.aspx
#
self.selector_indicators = {
'BB' : self.bb(self._symbol, 20, 1, MovingAverageType.SIMPLE, Resolution.DAILY, Field.LOW),
'RSI' :self.rsi(self._symbol, 14, MovingAverageType.SIMPLE, Resolution.DAILY, Field.LOW),
'EMA' :self.ema(self._symbol, 14, Resolution.DAILY, Field.LOW),
'SMA' :self.sma(self._symbol, 14, Resolution.DAILY, Field.LOW),
'MACD' : self.macd(self._symbol, 12, 26, 9, MovingAverageType.SIMPLE, Resolution.DAILY, Field.LOW),
'MOM' : self.mom(self._symbol, 20, Resolution.DAILY, Field.LOW),
'MOMP' : self.momp(self._symbol, 20, Resolution.DAILY, Field.LOW),
'STD' : self.std(self._symbol, 20, Resolution.DAILY, Field.LOW),
'MIN' : self.min(self._symbol, 14, Resolution.DAILY, Field.HIGH),
'MAX' : self.max(self._symbol, 14, Resolution.DAILY, Field.LOW),
# ATR and AROON are special in that they accept a TradeBar instance instead of a decimal, we could easily project and/or transform the input TradeBar
# before it gets sent to the ATR/AROON indicator, here we use a function that will multiply the input trade bar by a factor of two
'ATR' : self.atr(self._symbol, 14, MovingAverageType.SIMPLE, Resolution.DAILY, Func[IBaseData, IBaseDataBar](self.selector_double__trade_bar)),
'AROON' : self.aroon(self._symbol, 20, Resolution.DAILY, Func[IBaseData, IBaseDataBar](self.selector_double__trade_bar))
}
# Custom Data Indicator:
self.rsi_custom = self.rsi(self.custom_symbol, 14, MovingAverageType.SIMPLE, Resolution.DAILY)
self.min_custom = self.min(self.custom_symbol, 14, Resolution.DAILY)
self.max_custom = self.max(self.custom_symbol, 14, Resolution.DAILY)
# in addition to defining indicators on a single security, you can all define 'composite' indicators.
# these are indicators that require multiple inputs. the most common of which is a ratio.
# suppose we seek the ratio of BTC to SPY, we could write the following:
spy_close = Identity(self._symbol)
ibm_close = Identity(self.custom_symbol)
# this will create a new indicator whose value is IBM/SPY
self.ratio = IndicatorExtensions.over(ibm_close, spy_close)
# we can also easily plot our indicators each time they update using th PlotIndicator function
self.plot_indicator("Ratio", self.ratio)
# The following methods will add multiple charts to the algorithm output.
# Those chatrs names will be used later to plot different series in a particular chart.
# For more information on Lean Charting see: https://www.quantconnect.com/docs#Charting
Chart('BB')
Chart('STD')
Chart('ATR')
Chart('AROON')
Chart('MACD')
Chart('Averages')
# Here we make use of the Schelude method to update the plots once per day at market close.
self.schedule.on(self.date_rules.every_day(), self.time_rules.before_market_close(self._symbol), self.update_plots)
def on_data(self, data: Slice):
'''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
Arguments:
data: Slice object keyed by symbol containing the stock data
'''
if (#not data.bars.contains_key(self._symbol) or
not self.indicators['BB'].is_ready or
not self.indicators['RSI'].is_ready):
return
if not data.bars.contains_key(self._symbol):
return
self.price = data[self._symbol].close
if not self.portfolio.hold_stock:
quantity = int(self.portfolio.cash / self.price)
self.order(self._symbol, quantity)
self.debug('Purchased SPY on ' + self.time.strftime('%Y-%m-%d'))
def update_plots(self):
if not self.indicators['BB'].is_ready or not self.indicators['STD'].is_ready:
return
# Plots can also be created just with this one line command.
self.plot('RSI', self.indicators['RSI'])
# Custom data indicator
self.plot('RSI-FB', self.rsi_custom)
# Here we make use of the chats decalred in the Initialize method, plotting multiple series
# in each chart.
self.plot('STD', 'STD', self.indicators['STD'].current.value)
self.plot('BB', 'Price', self.price)
self.plot('BB', 'BollingerUpperBand', self.indicators['BB'].upper_band.current.value)
self.plot('BB', 'BollingerMiddleBand', self.indicators['BB'].middle_band.current.value)
self.plot('BB', 'BollingerLowerBand', self.indicators['BB'].lower_band.current.value)
self.plot('AROON', 'Aroon', self.indicators['AROON'].current.value)
self.plot('AROON', 'AroonUp', self.indicators['AROON'].aroon_up.current.value)
self.plot('AROON', 'AroonDown', self.indicators['AROON'].aroon_down.current.value)
# The following Plot method calls are commented out because of the 10 series limit for backtests
#self.plot('ATR', 'ATR', self.indicators['ATR'].current.value)
#self.plot('ATR', 'ATRDoubleBar', self.selector_indicators['ATR'].current.value)
#self.plot('Averages', 'SMA', self.indicators['SMA'].current.value)
#self.plot('Averages', 'EMA', self.indicators['EMA'].current.value)
#self.plot('MOM', self.indicators['MOM'].current.value)
#self.plot('MOMP', self.indicators['MOMP'].current.value)
#self.plot('MACD', 'MACD', self.indicators['MACD'].current.value)
#self.plot('MACD', 'MACDSignal', self.indicators['MACD'].signal.current.value)
def selector_double__trade_bar(self, bar):
trade_bar = TradeBar()
trade_bar.close = 2 * bar.close
trade_bar.data_type = bar.data_type
trade_bar.high = 2 * bar.high
trade_bar.low = 2 * bar.low
trade_bar.open = 2 * bar.open
trade_bar.symbol = bar.symbol
trade_bar.time = bar.time
trade_bar.value = 2 * bar.value
trade_bar.period = bar.period
return trade_bar