# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from AlgorithmImports import * from QuantConnect.Algorithm.CSharp import * ### ### Basic template algorithm simply initializes the date range and cash. This is a skeleton ### framework you can use for designing an algorithm. ### ### ### ### class IndicatorSuiteAlgorithm(QCAlgorithm): '''Demonstration algorithm of popular indicators and plotting them.''' def initialize(self): '''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' self._symbol = "SPY" self._symbol2 = "GOOG" self.custom_symbol = "IBM" self.price = 0.0 self.set_start_date(2013, 1, 1) #Set Start Date self.set_end_date(2014, 12, 31) #Set End Date self.set_cash(25000) #Set Strategy Cash # Find more symbols here: http://quantconnect.com/data self.add_equity(self._symbol, Resolution.DAILY) self.add_equity(self._symbol2, Resolution.DAILY) self.add_data(CustomData, self.custom_symbol, Resolution.DAILY) # Set up default Indicators, these indicators are defined on the Value property of incoming data (except ATR and AROON which use the full TradeBar object) self.indicators = { 'BB' : self.bb(self._symbol, 20, 1, MovingAverageType.SIMPLE, Resolution.DAILY), 'RSI' : self.rsi(self._symbol, 14, MovingAverageType.SIMPLE, Resolution.DAILY), 'EMA' : self.ema(self._symbol, 14, Resolution.DAILY), 'SMA' : self.sma(self._symbol, 14, Resolution.DAILY), 'MACD' : self.macd(self._symbol, 12, 26, 9, MovingAverageType.SIMPLE, Resolution.DAILY), 'MOM' : self.mom(self._symbol, 20, Resolution.DAILY), 'MOMP' : self.momp(self._symbol, 20, Resolution.DAILY), 'STD' : self.std(self._symbol, 20, Resolution.DAILY), # by default if the symbol is a tradebar type then it will be the min of the low property 'MIN' : self.min(self._symbol, 14, Resolution.DAILY), # by default if the symbol is a tradebar type then it will be the max of the high property 'MAX' : self.max(self._symbol, 14, Resolution.DAILY), 'ATR' : self.atr(self._symbol, 14, MovingAverageType.SIMPLE, Resolution.DAILY), 'AROON' : self.aroon(self._symbol, 20, Resolution.DAILY), 'B' : self.b(self._symbol, self._symbol2, 14) } # Here we're going to define indicators using 'selector' functions. These 'selector' functions will define what data gets sent into the indicator # These functions have a signature like the following: decimal Selector(BaseData base_data), and can be defined like: base_data => base_data.value # We'll define these 'selector' functions to select the Low value # # For more information on 'anonymous functions' see: http:#en.wikipedia.org/wiki/Anonymous_function # https:#msdn.microsoft.com/en-us/library/bb397687.aspx # self.selector_indicators = { 'BB' : self.bb(self._symbol, 20, 1, MovingAverageType.SIMPLE, Resolution.DAILY, Field.LOW), 'RSI' :self.rsi(self._symbol, 14, MovingAverageType.SIMPLE, Resolution.DAILY, Field.LOW), 'EMA' :self.ema(self._symbol, 14, Resolution.DAILY, Field.LOW), 'SMA' :self.sma(self._symbol, 14, Resolution.DAILY, Field.LOW), 'MACD' : self.macd(self._symbol, 12, 26, 9, MovingAverageType.SIMPLE, Resolution.DAILY, Field.LOW), 'MOM' : self.mom(self._symbol, 20, Resolution.DAILY, Field.LOW), 'MOMP' : self.momp(self._symbol, 20, Resolution.DAILY, Field.LOW), 'STD' : self.std(self._symbol, 20, Resolution.DAILY, Field.LOW), 'MIN' : self.min(self._symbol, 14, Resolution.DAILY, Field.HIGH), 'MAX' : self.max(self._symbol, 14, Resolution.DAILY, Field.LOW), # ATR and AROON are special in that they accept a TradeBar instance instead of a decimal, we could easily project and/or transform the input TradeBar # before it gets sent to the ATR/AROON indicator, here we use a function that will multiply the input trade bar by a factor of two 'ATR' : self.atr(self._symbol, 14, MovingAverageType.SIMPLE, Resolution.DAILY, Func[IBaseData, IBaseDataBar](self.selector_double__trade_bar)), 'AROON' : self.aroon(self._symbol, 20, Resolution.DAILY, Func[IBaseData, IBaseDataBar](self.selector_double__trade_bar)) } # Custom Data Indicator: self.rsi_custom = self.rsi(self.custom_symbol, 14, MovingAverageType.SIMPLE, Resolution.DAILY) self.min_custom = self.min(self.custom_symbol, 14, Resolution.DAILY) self.max_custom = self.max(self.custom_symbol, 14, Resolution.DAILY) # in addition to defining indicators on a single security, you can all define 'composite' indicators. # these are indicators that require multiple inputs. the most common of which is a ratio. # suppose we seek the ratio of BTC to SPY, we could write the following: spy_close = Identity(self._symbol) ibm_close = Identity(self.custom_symbol) # this will create a new indicator whose value is IBM/SPY self.ratio = IndicatorExtensions.over(ibm_close, spy_close) # we can also easily plot our indicators each time they update using th PlotIndicator function self.plot_indicator("Ratio", self.ratio) # The following methods will add multiple charts to the algorithm output. # Those chatrs names will be used later to plot different series in a particular chart. # For more information on Lean Charting see: https://www.quantconnect.com/docs#Charting Chart('BB') Chart('STD') Chart('ATR') Chart('AROON') Chart('MACD') Chart('Averages') # Here we make use of the Schelude method to update the plots once per day at market close. self.schedule.on(self.date_rules.every_day(), self.time_rules.before_market_close(self._symbol), self.update_plots) def on_data(self, data: Slice): '''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. Arguments: data: Slice object keyed by symbol containing the stock data ''' if (#not data.bars.contains_key(self._symbol) or not self.indicators['BB'].is_ready or not self.indicators['RSI'].is_ready): return if not data.bars.contains_key(self._symbol): return self.price = data[self._symbol].close if not self.portfolio.hold_stock: quantity = int(self.portfolio.cash / self.price) self.order(self._symbol, quantity) self.debug('Purchased SPY on ' + self.time.strftime('%Y-%m-%d')) def update_plots(self): if not self.indicators['BB'].is_ready or not self.indicators['STD'].is_ready: return # Plots can also be created just with this one line command. self.plot('RSI', self.indicators['RSI']) # Custom data indicator self.plot('RSI-FB', self.rsi_custom) # Here we make use of the chats decalred in the Initialize method, plotting multiple series # in each chart. self.plot('STD', 'STD', self.indicators['STD'].current.value) self.plot('BB', 'Price', self.price) self.plot('BB', 'BollingerUpperBand', self.indicators['BB'].upper_band.current.value) self.plot('BB', 'BollingerMiddleBand', self.indicators['BB'].middle_band.current.value) self.plot('BB', 'BollingerLowerBand', self.indicators['BB'].lower_band.current.value) self.plot('AROON', 'Aroon', self.indicators['AROON'].current.value) self.plot('AROON', 'AroonUp', self.indicators['AROON'].aroon_up.current.value) self.plot('AROON', 'AroonDown', self.indicators['AROON'].aroon_down.current.value) # The following Plot method calls are commented out because of the 10 series limit for backtests #self.plot('ATR', 'ATR', self.indicators['ATR'].current.value) #self.plot('ATR', 'ATRDoubleBar', self.selector_indicators['ATR'].current.value) #self.plot('Averages', 'SMA', self.indicators['SMA'].current.value) #self.plot('Averages', 'EMA', self.indicators['EMA'].current.value) #self.plot('MOM', self.indicators['MOM'].current.value) #self.plot('MOMP', self.indicators['MOMP'].current.value) #self.plot('MACD', 'MACD', self.indicators['MACD'].current.value) #self.plot('MACD', 'MACDSignal', self.indicators['MACD'].signal.current.value) def selector_double__trade_bar(self, bar): trade_bar = TradeBar() trade_bar.close = 2 * bar.close trade_bar.data_type = bar.data_type trade_bar.high = 2 * bar.high trade_bar.low = 2 * bar.low trade_bar.open = 2 * bar.open trade_bar.symbol = bar.symbol trade_bar.time = bar.time trade_bar.value = 2 * bar.value trade_bar.period = bar.period return trade_bar