# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from AlgorithmImports import * ### ### Regression algorithm illustrating how to request history data for different data normalization modes. ### class HistoryWithDifferentDataNormalizationModeRegressionAlgorithm(QCAlgorithm): def initialize(self): self.set_start_date(2013, 10, 7) self.set_end_date(2014, 1, 1) self.aapl_equity_symbol = self.add_equity("AAPL", Resolution.DAILY).symbol self.es_future_symbol = self.add_future(Futures.Indices.SP_500_E_MINI, Resolution.DAILY).symbol def on_end_of_algorithm(self): equity_data_normalization_modes = [ DataNormalizationMode.RAW, DataNormalizationMode.ADJUSTED, DataNormalizationMode.SPLIT_ADJUSTED ] self.check_history_results_for_data_normalization_modes(self.aapl_equity_symbol, self.start_date, self.end_date, Resolution.DAILY, equity_data_normalization_modes) future_data_normalization_modes = [ DataNormalizationMode.RAW, DataNormalizationMode.BACKWARDS_RATIO, DataNormalizationMode.BACKWARDS_PANAMA_CANAL, DataNormalizationMode.FORWARD_PANAMA_CANAL ] self.check_history_results_for_data_normalization_modes(self.es_future_symbol, self.start_date, self.end_date, Resolution.DAILY, future_data_normalization_modes) def check_history_results_for_data_normalization_modes(self, symbol, start, end, resolution, data_normalization_modes): history_results = [self.history([symbol], start, end, resolution, data_normalization_mode=x) for x in data_normalization_modes] history_results = [x.droplevel(0, axis=0) for x in history_results] if len(history_results[0].index.levels) == 3 else history_results history_results = [x.loc[symbol].close for x in history_results] if any(x.size == 0 or x.size != history_results[0].size for x in history_results): raise AssertionError(f"History results for {symbol} have different number of bars") # Check that, for each history result, close prices at each time are different for these securities (AAPL and ES) for j in range(history_results[0].size): close_prices = set(history_results[i][j] for i in range(len(history_results))) if len(close_prices) != len(data_normalization_modes): raise AssertionError(f"History results for {symbol} have different close prices at the same time")