# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from AlgorithmImports import * ### ### Regression test illustrating how history from custom data sources can be requested. The method used in this ### example also allows to specify other parameters than just the resolution, such as the data normalization mode, the data mapping mode, etc. ### class HistoryWithCustomDataSourceRegressionAlgorithm(QCAlgorithm): def initialize(self): self.set_start_date(2014, 6, 5) self.set_end_date(2014, 6, 6) self.aapl = self.add_data(CustomData, "AAPL", Resolution.MINUTE).symbol self.spy = self.add_data(CustomData, "SPY", Resolution.MINUTE).symbol def on_end_of_algorithm(self): aapl_history = self.history(CustomData, self.aapl, self.start_date, self.end_date, Resolution.MINUTE, fill_forward=False, extended_market_hours=False, data_normalization_mode=DataNormalizationMode.RAW).droplevel(0, axis=0) spy_history = self.history(CustomData, self.spy, self.start_date, self.end_date, Resolution.MINUTE, fill_forward=False, extended_market_hours=False, data_normalization_mode=DataNormalizationMode.RAW).droplevel(0, axis=0) if aapl_history.size == 0 or spy_history.size == 0: raise AssertionError("At least one of the history results is empty") # Check that both resutls contain the same data, since CustomData fetches APPL data regardless of the symbol if not aapl_history.equals(spy_history): raise AssertionError("Histories are not equal") class CustomData(PythonData): '''Custom data source for the regression test algorithm, which returns AAPL equity data regardless of the symbol requested.''' def get_source(self, config, date, is_live_mode): return TradeBar().get_source( SubscriptionDataConfig( config, CustomData, # Create a new symbol as equity so we find the existing data files # Symbol.create(config.mapped_symbol, SecurityType.EQUITY, config.market)), Symbol.create("AAPL", SecurityType.EQUITY, config.market)), date, is_live_mode) def reader(self, config, line, date, is_live_mode): trade_bar = TradeBar.parse_equity(config, line, date) data = CustomData() data.time = trade_bar.time data.value = trade_bar.value data.close = trade_bar.close data.open = trade_bar.open data.high = trade_bar.high data.low = trade_bar.low data.volume = trade_bar.volume return data