# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from AlgorithmImports import * ### ### Regression algorithm illustrating the usage of the method ### to get multiple future option chains. ### class FutureOptionChainsMultipleFullDataRegressionAlgorithm(QCAlgorithm): def initialize(self): self.set_start_date(2020, 1, 6) self.set_end_date(2020, 1, 6) es_future_contract = self.add_future_contract( Symbol.create_future(Futures.Indices.SP_500_E_MINI, Market.CME, datetime(2020, 3, 20)), Resolution.MINUTE).symbol gc_future_contract = self.add_future_contract( Symbol.create_future(Futures.Metals.GOLD, Market.COMEX, datetime(2020, 4, 28)), Resolution.MINUTE).symbol chains = self.option_chains([es_future_contract, gc_future_contract], flatten=True) self._es_option_contract = self.get_contract(chains, es_future_contract) self._gc_option_contract = self.get_contract(chains, gc_future_contract) self.add_future_option_contract(self._es_option_contract) self.add_future_option_contract(self._gc_option_contract) def get_contract(self, chains: OptionChains, underlying: Symbol) -> Symbol: df = chains.data_frame # Index by the requested underlying, by getting all data with canonicals which underlying is the requested underlying symbol: canonicals = df.index.get_level_values('canonical') condition = [canonical for canonical in canonicals if canonical.underlying == underlying] contracts = df.loc[condition] # Get contracts expiring within 4 months, with the latest expiration date, highest strike and lowest price contracts = contracts.loc[(df.expiry <= self.time + timedelta(days=120))] contracts = contracts.sort_values(['expiry', 'strike', 'lastprice'], ascending=[False, False, True]) return contracts.index[0][1] def on_data(self, data): # Do some trading with the selected contract for sample purposes if not self.portfolio.invested: self.set_holdings(self._es_option_contract, 0.25) self.set_holdings(self._gc_option_contract, 0.25) else: self.liquidate()