# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from AlgorithmImports import * ### ### Demonstration of how to define a universe using the fundamental data ### ### ### ### ### class FundamentalUniverseSelectionAlgorithm(QCAlgorithm): def initialize(self): self.set_start_date(2014, 3, 25) self.set_end_date(2014, 4, 7) self.universe_settings.resolution = Resolution.DAILY self.add_equity("SPY") self.add_equity("AAPL") self.set_universe_selection(FundamentalUniverseSelectionModel(self.select)) self.changes = None self.number_of_symbols_fundamental = 10 # return a list of three fixed symbol objects def selection_function(self, fundamental): # sort descending by daily dollar volume sorted_by_dollar_volume = sorted([x for x in fundamental if x.price > 1], key=lambda x: x.dollar_volume, reverse=True) # sort descending by P/E ratio sorted_by_pe_ratio = sorted(sorted_by_dollar_volume, key=lambda x: x.valuation_ratios.pe_ratio, reverse=True) # take the top entries from our sorted collection return [ x.symbol for x in sorted_by_pe_ratio[:self.number_of_symbols_fundamental] ] def on_data(self, data): # if we have no changes, do nothing if self.changes is None: return # liquidate removed securities for security in self.changes.removed_securities: if security.invested: self.liquidate(security.symbol) self.debug("Liquidated Stock: " + str(security.symbol.value)) # we want 50% allocation in each security in our universe for security in self.changes.added_securities: self.set_holdings(security.symbol, 0.02) self.changes = None # this event fires whenever we have changes to our universe def on_securities_changed(self, changes): self.changes = changes def select(self, fundamental): # sort descending by daily dollar volume sorted_by_dollar_volume = sorted([x for x in fundamental if x.has_fundamental_data and x.price > 1], key=lambda x: x.dollar_volume, reverse=True) # sort descending by P/E ratio sorted_by_pe_ratio = sorted(sorted_by_dollar_volume, key=lambda x: x.valuation_ratios.pe_ratio, reverse=True) # take the top entries from our sorted collection return [ x.symbol for x in sorted_by_pe_ratio[:2] ]