# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from AlgorithmImports import * ### ### Demonstration of how to define a universe using the fundamental data ### ### ### ### ### class FundamentalRegressionAlgorithm(QCAlgorithm): def initialize(self): self.set_start_date(2014, 3, 26) self.set_end_date(2014, 4, 7) self.universe_settings.resolution = Resolution.DAILY self._universe = self.add_universe(self.selection_function) # before we add any symbol self.assert_fundamental_universe_data() self.add_equity("SPY") self.add_equity("AAPL") # Request fundamental data for symbols at current algorithm time ibm = Symbol.create("IBM", SecurityType.EQUITY, Market.USA) ibm_fundamental = self.fundamentals(ibm) if self.time != self.start_date or self.time != ibm_fundamental.end_time: raise ValueError(f"Unexpected Fundamental time {ibm_fundamental.end_time}") if ibm_fundamental.price == 0: raise ValueError(f"Unexpected Fundamental IBM price!") nb = Symbol.create("NB", SecurityType.EQUITY, Market.USA) fundamentals = self.fundamentals([ nb, ibm ]) if len(fundamentals) != 2: raise ValueError(f"Unexpected Fundamental count {len(fundamentals)}! Expected 2") # Request historical fundamental data for symbols history = self.history(Fundamental, timedelta(days=2)) if len(history) != 4: raise ValueError(f"Unexpected Fundamental history count {len(history)}! Expected 4") for ticker in [ "AAPL", "SPY" ]: data = history.loc[ticker] if data["value"][0] == 0: raise ValueError(f"Unexpected {data} fundamental data") if Object.reference_equals(data.earningreports.iloc[0], data.earningreports.iloc[1]): raise ValueError(f"Unexpected fundamental data instance duplication") if data.earningreports.iloc[0]._time_provider.get_utc_now() == data.earningreports.iloc[1]._time_provider.get_utc_now(): raise ValueError(f"Unexpected fundamental data instance duplication") self.assert_fundamental_universe_data() self.changes = None self.number_of_symbols_fundamental = 2 def assert_fundamental_universe_data(self): # Case A universe_data = self.history(self._universe.data_type, [self._universe.symbol], timedelta(days=2), flatten=True) self.assert_fundamental_history(universe_data, "A") # Case B (sugar on A) universe_data_per_time = self.history(self._universe, timedelta(days=2), flatten=True) self.assert_fundamental_history(universe_data_per_time, "B") # Case C: Passing through the unvierse type and symbol enumerable_of_data_dictionary = self.history[self._universe.data_type]([self._universe.symbol], 100) for selection_collection_for_a_day in enumerable_of_data_dictionary: self.assert_fundamental_enumerator(selection_collection_for_a_day[self._universe.symbol], "C") def assert_fundamental_history(self, df, case_name): dates = df.index.get_level_values('time').unique() if dates.shape[0] != 2: raise ValueError(f"Unexpected Fundamental universe dates count {dates.shape[0]}! Expected 2") for date in dates: sub_df = df.loc[date] if sub_df.shape[0] < 7000: raise ValueError(f"Unexpected historical Fundamentals data count {sub_df.shape[0]} case {case_name}! Expected > 7000") def assert_fundamental_enumerator(self, enumerable, case_name): data_point_count = 0 for fundamental in enumerable: data_point_count += 1 if type(fundamental) is not Fundamental: raise ValueError(f"Unexpected Fundamentals data type {type(fundamental)} case {case_name}! {str(fundamental)}") if data_point_count < 7000: raise ValueError(f"Unexpected historical Fundamentals data count {data_point_count} case {case_name}! Expected > 7000") # return a list of three fixed symbol objects def selection_function(self, fundamental): # sort descending by daily dollar volume sorted_by_dollar_volume = sorted([x for x in fundamental if x.price > 1], key=lambda x: x.dollar_volume, reverse=True) # sort descending by P/E ratio sorted_by_pe_ratio = sorted(sorted_by_dollar_volume, key=lambda x: x.valuation_ratios.pe_ratio, reverse=True) # take the top entries from our sorted collection return [ x.symbol for x in sorted_by_pe_ratio[:self.number_of_symbols_fundamental] ] def on_data(self, data): # if we have no changes, do nothing if self.changes is None: return # liquidate removed securities for security in self.changes.removed_securities: if security.invested: self.liquidate(security.symbol) self.debug("Liquidated Stock: " + str(security.symbol.value)) # we want 50% allocation in each security in our universe for security in self.changes.added_securities: self.set_holdings(security.symbol, 0.02) self.changes = None # this event fires whenever we have changes to our universe def on_securities_changed(self, changes): self.changes = changes