# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from AlgorithmImports import * ### ### Regression test algorithm for scheduled universe selection GH 3890 ### class FundamentalCustomSelectionTimeRegressionAlgorithm(QCAlgorithm): def initialize(self): '''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' self._month_start_selection = 0 self._month_end_selection = 0 self._specific_date_selection = 0 self._symbol = Symbol.create("SPY", SecurityType.EQUITY, Market.USA) self.set_start_date(2014, 3, 25) self.set_end_date(2014, 5, 10) self.universe_settings.resolution = Resolution.DAILY # Test use case A self.add_universe(self.date_rules.month_start(), self.selection_function__month_start) # Test use case B other_settings = UniverseSettings(self.universe_settings) other_settings.schedule.on(self.date_rules.month_end()) self.add_universe(FundamentalUniverse.usa(self.selection_function__month_end, other_settings)) # Test use case C self.universe_settings.schedule.on(self.date_rules.on(datetime(2014, 5, 9))) self.add_universe(FundamentalUniverse.usa(self.selection_function__specific_date)) def selection_function__specific_date(self, coarse): self._specific_date_selection += 1 if self.time != datetime(2014, 5, 9): raise ValueError("SelectionFunction_SpecificDate unexpected selection: " + str(self.time)) return [ self._symbol ] def selection_function__month_start(self, coarse): self._month_start_selection += 1 if self._month_start_selection == 1: if self.time != self.start_date: raise ValueError("Month Start Unexpected initial selection: " + str(self.time)) elif self.time != datetime(2014, 4, 1) and self.time != datetime(2014, 5, 1): raise ValueError("Month Start unexpected selection: " + str(self.time)) return [ self._symbol ] def selection_function__month_end(self, coarse): self._month_end_selection += 1 if self._month_end_selection == 1: if self.time != self.start_date: raise ValueError("Month End unexpected initial selection: " + str(self.time)) elif self.time != datetime(2014, 3, 31) and self.time != datetime(2014, 4, 30): raise ValueError("Month End unexpected selection: " + str(self.time)) return [ self._symbol ] def on_data(self, data): '''on_data event is the primary entry point for your algorithm. Each new data point will be pumped in here. Arguments: data: Slice object keyed by symbol containing the stock data ''' if not self.portfolio.invested: self.set_holdings(self._symbol, 1) def on_end_of_algorithm(self): if self._month_end_selection != 3: raise ValueError("Month End unexpected selection count: " + str(self._month_end_selection)) if self._month_start_selection != 3: raise ValueError("Month Start unexpected selection count: " + str(self._month_start_selection)) if self._specific_date_selection != 1: raise ValueError("Specific date unexpected selection count: " + str(self._month_start_selection))