# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from AlgorithmImports import *
###
### Example algorithm of the Identity indicator with the filtering enhancement. Filtering is used to check
### the output of the indicator before returning it.
###
###
###
class FilteredIdentityAlgorithm(QCAlgorithm):
''' Example algorithm of the Identity indicator with the filtering enhancement '''
def initialize(self):
self.set_start_date(2014,5,2) # Set Start Date
self.set_end_date(self.start_date) # Set End Date
self.set_cash(100000) # Set Stratgy Cash
# Find more symbols here: http://quantconnect.com/data
security = self.add_forex("EURUSD", Resolution.TICK)
self._symbol = security.symbol
self._identity = self.filtered_identity(self._symbol, filter=self.filter)
def filter(self, data):
'''Filter function: True if data is not an instance of Tick. If it is, true if TickType is Trade
data -- Data for applying the filter'''
if isinstance(data, Tick):
return data.tick_type == TickType.TRADE
return True
def on_data(self, data):
# Since we are only accepting TickType.TRADE,
# this indicator will never be ready
if not self._identity.is_ready: return
if not self.portfolio.invested:
self.set_holdings(self._symbol, 1)
self.debug("Purchased Stock")