# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from AlgorithmImports import *
###
### This regression algorithm is for testing a custom Python filter for options
### that returns a OptionFilterUniverse.
###
###
###
###
class FilterUniverseRegressionAlgorithm(QCAlgorithm):
underlying_ticker = "GOOG"
def initialize(self):
self.set_start_date(2015, 12, 24)
self.set_end_date(2015, 12, 28)
self.set_cash(100000)
equity = self.add_equity(self.underlying_ticker)
option = self.add_option(self.underlying_ticker)
self.option_symbol = option.symbol
# Set our custom universe filter
option.set_filter(self.filter_function)
# use the underlying equity as the benchmark
self.set_benchmark(equity.symbol)
def filter_function(self, universe):
universe = universe.weeklys_only().strikes(-5, +5).calls_only().expiration(0, 1)
return universe
def on_data(self,slice):
if self.portfolio.invested: return
for kvp in slice.option_chains:
if kvp.key != self.option_symbol: continue
chain = kvp.value
contracts = [option for option in sorted(chain, key = lambda x:x.strike, reverse = True)]
if contracts:
self.market_order(contracts[0].symbol, 1)