# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from AlgorithmImports import * ### ### This regression algorithm is for testing a custom Python filter for options ### that returns a OptionFilterUniverse. ### ### ### ### class FilterUniverseRegressionAlgorithm(QCAlgorithm): underlying_ticker = "GOOG" def initialize(self): self.set_start_date(2015, 12, 24) self.set_end_date(2015, 12, 28) self.set_cash(100000) equity = self.add_equity(self.underlying_ticker) option = self.add_option(self.underlying_ticker) self.option_symbol = option.symbol # Set our custom universe filter option.set_filter(self.filter_function) # use the underlying equity as the benchmark self.set_benchmark(equity.symbol) def filter_function(self, universe): universe = universe.weeklys_only().strikes(-5, +5).calls_only().expiration(0, 1) return universe def on_data(self,slice): if self.portfolio.invested: return for kvp in slice.option_chains: if kvp.key != self.option_symbol: continue chain = kvp.value contracts = [option for option in sorted(chain, key = lambda x:x.strike, reverse = True)] if contracts: self.market_order(contracts[0].symbol, 1)