# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from AlgorithmImports import * ### ### In this algorithm we demonstrate how to perform some technical analysis as ### part of your coarse fundamental universe selection ### ### ### ### ### class EmaCrossUniverseSelectionAlgorithm(QCAlgorithm): def initialize(self): '''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' self.set_start_date(2010,1,1) #Set Start Date self.set_end_date(2015,1,1) #Set End Date self.set_cash(100000) #Set Strategy Cash self.universe_settings.resolution = Resolution.DAILY self.universe_settings.leverage = 2 self.coarse_count = 10 self.averages = { } # this add universe method accepts two parameters: # - coarse selection function: accepts an IEnumerable and returns an IEnumerable self.add_universe(self.coarse_selection_function) # sort the data by daily dollar volume and take the top 'NumberOfSymbols' def coarse_selection_function(self, coarse): # We are going to use a dictionary to refer the object that will keep the moving averages for cf in coarse: if cf.symbol not in self.averages: self.averages[cf.symbol] = SymbolData(cf.symbol) # Updates the SymbolData object with current EOD price avg = self.averages[cf.symbol] avg.update(cf.end_time, cf.adjusted_price) # Filter the values of the dict: we only want up-trending securities values = list(filter(lambda x: x.is_uptrend, self.averages.values())) # Sorts the values of the dict: we want those with greater difference between the moving averages values.sort(key=lambda x: x.scale, reverse=True) for x in values[:self.coarse_count]: self.log('symbol: ' + str(x.symbol.value) + ' scale: ' + str(x.scale)) # we need to return only the symbol objects return [ x.symbol for x in values[:self.coarse_count] ] # this event fires whenever we have changes to our universe def on_securities_changed(self, changes): # liquidate removed securities for security in changes.removed_securities: if security.invested: self.liquidate(security.symbol) # we want 20% allocation in each security in our universe for security in changes.added_securities: self.set_holdings(security.symbol, 0.1) class SymbolData(object): def __init__(self, symbol): self._symbol = symbol self.tolerance = 1.01 self.fast = ExponentialMovingAverage(100) self.slow = ExponentialMovingAverage(300) self.is_uptrend = False self.scale = 0 def update(self, time, value): if self.fast.update(time, value) and self.slow.update(time, value): fast = self.fast.current.value slow = self.slow.current.value self.is_uptrend = fast > slow * self.tolerance if self.is_uptrend: self.scale = (fast - slow) / ((fast + slow) / 2.0)