# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from AlgorithmImports import *
###
### In this algorithm we demonstrate how to perform some technical analysis as
### part of your coarse fundamental universe selection
###
###
###
###
###
class EmaCrossUniverseSelectionAlgorithm(QCAlgorithm):
def initialize(self):
'''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.'''
self.set_start_date(2010,1,1) #Set Start Date
self.set_end_date(2015,1,1) #Set End Date
self.set_cash(100000) #Set Strategy Cash
self.universe_settings.resolution = Resolution.DAILY
self.universe_settings.leverage = 2
self.coarse_count = 10
self.averages = { }
# this add universe method accepts two parameters:
# - coarse selection function: accepts an IEnumerable and returns an IEnumerable
self.add_universe(self.coarse_selection_function)
# sort the data by daily dollar volume and take the top 'NumberOfSymbols'
def coarse_selection_function(self, coarse):
# We are going to use a dictionary to refer the object that will keep the moving averages
for cf in coarse:
if cf.symbol not in self.averages:
self.averages[cf.symbol] = SymbolData(cf.symbol)
# Updates the SymbolData object with current EOD price
avg = self.averages[cf.symbol]
avg.update(cf.end_time, cf.adjusted_price)
# Filter the values of the dict: we only want up-trending securities
values = list(filter(lambda x: x.is_uptrend, self.averages.values()))
# Sorts the values of the dict: we want those with greater difference between the moving averages
values.sort(key=lambda x: x.scale, reverse=True)
for x in values[:self.coarse_count]:
self.log('symbol: ' + str(x.symbol.value) + ' scale: ' + str(x.scale))
# we need to return only the symbol objects
return [ x.symbol for x in values[:self.coarse_count] ]
# this event fires whenever we have changes to our universe
def on_securities_changed(self, changes):
# liquidate removed securities
for security in changes.removed_securities:
if security.invested:
self.liquidate(security.symbol)
# we want 20% allocation in each security in our universe
for security in changes.added_securities:
self.set_holdings(security.symbol, 0.1)
class SymbolData(object):
def __init__(self, symbol):
self._symbol = symbol
self.tolerance = 1.01
self.fast = ExponentialMovingAverage(100)
self.slow = ExponentialMovingAverage(300)
self.is_uptrend = False
self.scale = 0
def update(self, time, value):
if self.fast.update(time, value) and self.slow.update(time, value):
fast = self.fast.current.value
slow = self.slow.current.value
self.is_uptrend = fast > slow * self.tolerance
if self.is_uptrend:
self.scale = (fast - slow) / ((fast + slow) / 2.0)