# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from AlgorithmImports import *
###
### This example demonstrates how to implement a cross moving average for the futures front contract
###
###
###
###
class EmaCrossFuturesFrontMonthAlgorithm(QCAlgorithm):
def initialize(self):
self.set_start_date(2013, 10, 8)
self.set_end_date(2013, 10, 10)
self.set_cash(1000000)
future = self.add_future(Futures.Metals.GOLD)
# Only consider the front month contract
# Update the universe once per day to improve performance
future.set_filter(lambda x: x.front_month().only_apply_filter_at_market_open())
# Symbol of the current contract
self._symbol = None
# Create two exponential moving averages
self.fast = ExponentialMovingAverage(100)
self.slow = ExponentialMovingAverage(300)
self.tolerance = 0.001
self.consolidator = None
# Add a custom chart to track the EMA cross
chart = Chart('EMA Cross')
chart.add_series(Series('Fast', SeriesType.LINE, 0))
chart.add_series(Series('Slow', SeriesType.LINE, 0))
self.add_chart(chart)
def on_data(self,slice):
holding = None if self._symbol is None else self.portfolio.get(self._symbol)
if holding is not None:
# Buy the futures' front contract when the fast EMA is above the slow one
if self.fast.current.value > self.slow.current.value * (1 + self.tolerance):
if not holding.invested:
self.set_holdings(self._symbol, .1)
self.plot_ema()
elif holding.invested:
self.liquidate(self._symbol)
self.plot_ema()
def on_securities_changed(self, changes):
if len(changes.removed_securities) > 0:
# Remove the consolidator for the previous contract
# and reset the indicators
if self._symbol is not None and self.consolidator is not None:
self.subscription_manager.remove_consolidator(self._symbol, self.consolidator)
self.fast.reset()
self.slow.reset()
# We don't need to call Liquidate(_symbol),
# since its positions are liquidated because the contract has expired.
# Only one security will be added: the new front contract
self._symbol = changes.added_securities[0].symbol
# Create a new consolidator and register the indicators to it
self.consolidator = self.resolve_consolidator(self._symbol, Resolution.MINUTE)
self.register_indicator(self._symbol, self.fast, self.consolidator)
self.register_indicator(self._symbol, self.slow, self.consolidator)
# Warm up the indicators
self.warm_up_indicator(self._symbol, self.fast, Resolution.MINUTE)
self.warm_up_indicator(self._symbol, self.slow, Resolution.MINUTE)
self.plot_ema()
def plot_ema(self):
self.plot('EMA Cross', 'Fast', self.fast.current.value)
self.plot('EMA Cross', 'Slow', self.slow.current.value)