# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from AlgorithmImports import * ### ### Strategy example using a portfolio of ETF Global Rotation ### ### ### ### ### ### Strategy example using a portfolio of ETF Global Rotation ### ### ### ### class ETFGlobalRotationAlgorithm(QCAlgorithm): def initialize(self): self.set_cash(25000) self.set_start_date(2007,1,1) self.last_rotation_time = datetime.min self.rotation_interval = timedelta(days=30) self.first = True # these are the growth symbols we'll rotate through growth_symbols =["MDY", # US S&P mid cap 400 "IEV", # i_shares S&P europe 350 "EEM", # i_shared MSCI emerging markets "ILF", # i_shares S&P latin america "EPP" ] # i_shared MSCI Pacific ex-Japan # these are the safety symbols we go to when things are looking bad for growth safety_symbols = ["EDV", "SHY"] # "EDV" Vangaurd TSY 25yr, "SHY" Barclays Low Duration TSY # we'll hold some computed data in these guys self.symbol_data = [] for symbol in list(set(growth_symbols) | set(safety_symbols)): self.add_security(SecurityType.EQUITY, symbol, Resolution.MINUTE) self.one_month_performance = self.mom(symbol, 30, Resolution.DAILY) self.three_month_performance = self.mom(symbol, 90, Resolution.DAILY) self.symbol_data.append([symbol, self.one_month_performance, self.three_month_performance]) def on_data(self, data): # the first time we come through here we'll need to do some things such as allocation # and initializing our symbol data if self.first: self.first = False self.last_rotation_time = self.time return delta = self.time - self.last_rotation_time if delta > self.rotation_interval: self.last_rotation_time = self.time ordered_obj_scores = sorted(self.symbol_data, key=lambda x: Score(x[1].current.value,x[2].current.value).objective_score(), reverse=True) for x in ordered_obj_scores: self.log(">>SCORE>>" + x[0] + ">>" + str(Score(x[1].current.value,x[2].current.value).objective_score())) # pick which one is best from growth and safety symbols best_growth = ordered_obj_scores[0] if Score(best_growth[1].current.value,best_growth[2].current.value).objective_score() > 0: if (self.portfolio[best_growth[0]].quantity == 0): self.log("PREBUY>>LIQUIDATE>>") self.liquidate() self.log(">>BUY>>" + str(best_growth[0]) + "@" + str(100 * best_growth[1].current.value)) qty = self.portfolio.margin_remaining / self.securities[best_growth[0]].close self.market_order(best_growth[0], int(qty)) else: # if no one has a good objective score then let's hold cash this month to be safe self.log(">>LIQUIDATE>>CASH") self.liquidate() class Score(object): def __init__(self,one_month_performance_value,three_month_performance_value): self.one_month_performance = one_month_performance_value self.three_month_performance = three_month_performance_value def objective_score(self): weight1 = 100 weight2 = 75 return (weight1 * self.one_month_performance + weight2 * self.three_month_performance) / (weight1 + weight2)