# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from AlgorithmImports import *
###
### In this algorithm we show how you can easily use the universe selection feature to fetch symbols
### to be traded using the BaseData custom data system in combination with the AddUniverse{T} method.
### AddUniverse{T} requires a function that will return the symbols to be traded.
###
###
###
###
class DropboxBaseDataUniverseSelectionAlgorithm(QCAlgorithm):
def initialize(self) -> None:
self.universe_settings.resolution = Resolution.DAILY
# Order margin value has to have a minimum of 0.5% of Portfolio value, allows filtering out small trades and reduce fees.
# Commented so regression algorithm is more sensitive
#self.settings.minimum_order_margin_portfolio_percentage = 0.005
self.set_start_date(2017, 7, 6)
self.set_end_date(2018, 7, 4)
universe = self.add_universe(StockDataSource, self.stock_data_source)
historical_selection_data = self.history(universe, 3)
if len(historical_selection_data) != 3:
raise ValueError(f"Unexpected universe data count {len(historical_selection_data)}")
for universe_data in historical_selection_data["symbols"]:
if len(universe_data) != 5:
raise ValueError(f"Unexpected universe data receieved")
self._changes = None
def stock_data_source(self, data: list[DynamicData]) -> list[Symbol]:
list = []
for item in data:
for symbol in item["Symbols"]:
list.append(symbol)
return list
def on_data(self, slice: Slice) -> None:
if slice.bars.count == 0:
return
if not self._changes:
return
# start fresh
self.liquidate()
percentage = 1 / slice.bars.count
for trade_bar in slice.bars.values():
self.set_holdings(trade_bar.symbol, percentage)
# reset changes
self._changes = None
def on_securities_changed(self, changes: SecurityChanges) -> None:
self._changes = changes
class StockDataSource(PythonData):
def get_source(self, config: SubscriptionDataConfig, date: datetime, is_live_mode: bool) -> SubscriptionDataSource:
url = "https://www.dropbox.com/s/2l73mu97gcehmh7/daily-stock-picker-live.csv?dl=1" if is_live_mode else \
"https://www.dropbox.com/s/ae1couew5ir3z9y/daily-stock-picker-backtest.csv?dl=1"
return SubscriptionDataSource(url, SubscriptionTransportMedium.REMOTE_FILE)
def reader(self, config: SubscriptionDataConfig, line: str, date: datetime, is_live_mode: bool) -> DynamicData:
if not (line.strip() and line[0].isdigit()):
return None
stocks = StockDataSource()
stocks.symbol = config.symbol
csv = line.split(',')
if is_live_mode:
stocks.time = date
stocks["Symbols"] = csv
else:
stocks.time = datetime.strptime(csv[0], "%Y%m%d")
stocks["Symbols"] = csv[1:]
return stocks