# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from AlgorithmImports import * ### ### In this algorithm we show how you can easily use the universe selection feature to fetch symbols ### to be traded using the BaseData custom data system in combination with the AddUniverse{T} method. ### AddUniverse{T} requires a function that will return the symbols to be traded. ### ### ### ### class DropboxBaseDataUniverseSelectionAlgorithm(QCAlgorithm): def initialize(self) -> None: self.universe_settings.resolution = Resolution.DAILY # Order margin value has to have a minimum of 0.5% of Portfolio value, allows filtering out small trades and reduce fees. # Commented so regression algorithm is more sensitive #self.settings.minimum_order_margin_portfolio_percentage = 0.005 self.set_start_date(2017, 7, 6) self.set_end_date(2018, 7, 4) universe = self.add_universe(StockDataSource, self.stock_data_source) historical_selection_data = self.history(universe, 3) if len(historical_selection_data) != 3: raise ValueError(f"Unexpected universe data count {len(historical_selection_data)}") for universe_data in historical_selection_data["symbols"]: if len(universe_data) != 5: raise ValueError(f"Unexpected universe data receieved") self._changes = None def stock_data_source(self, data: list[DynamicData]) -> list[Symbol]: list = [] for item in data: for symbol in item["Symbols"]: list.append(symbol) return list def on_data(self, slice: Slice) -> None: if slice.bars.count == 0: return if not self._changes: return # start fresh self.liquidate() percentage = 1 / slice.bars.count for trade_bar in slice.bars.values(): self.set_holdings(trade_bar.symbol, percentage) # reset changes self._changes = None def on_securities_changed(self, changes: SecurityChanges) -> None: self._changes = changes class StockDataSource(PythonData): def get_source(self, config: SubscriptionDataConfig, date: datetime, is_live_mode: bool) -> SubscriptionDataSource: url = "https://www.dropbox.com/s/2l73mu97gcehmh7/daily-stock-picker-live.csv?dl=1" if is_live_mode else \ "https://www.dropbox.com/s/ae1couew5ir3z9y/daily-stock-picker-backtest.csv?dl=1" return SubscriptionDataSource(url, SubscriptionTransportMedium.REMOTE_FILE) def reader(self, config: SubscriptionDataConfig, line: str, date: datetime, is_live_mode: bool) -> DynamicData: if not (line.strip() and line[0].isdigit()): return None stocks = StockDataSource() stocks.symbol = config.symbol csv = line.split(',') if is_live_mode: stocks.time = date stocks["Symbols"] = csv else: stocks.time = datetime.strptime(csv[0], "%Y%m%d") stocks["Symbols"] = csv[1:] return stocks