# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from AlgorithmImports import * ### ### Demonstration of payments for cash dividends in backtesting. When data normalization mode is set ### to "Raw" the dividends are paid as cash directly into your portfolio. ### ### ### ### class DividendAlgorithm(QCAlgorithm): def initialize(self): '''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' self.set_start_date(1998,1,1) #Set Start Date self.set_end_date(2006,1,21) #Set End Date self.set_cash(100000) #Set Strategy Cash # Find more symbols here: http://quantconnect.com/data equity = self.add_equity("MSFT", Resolution.DAILY) equity.set_data_normalization_mode(DataNormalizationMode.RAW) # this will use the Tradier Brokerage open order split behavior # forward split will modify open order to maintain order value # reverse split open orders will be cancelled self.set_brokerage_model(BrokerageName.TRADIER_BROKERAGE) def on_data(self, data): '''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.''' bar = data["MSFT"] if self.transactions.orders_count == 0: self.set_holdings("MSFT", .5) # place some orders that won't fill, when the split comes in they'll get modified to reflect the split quantity = self.calculate_order_quantity("MSFT", .25) self.debug(f"Purchased Stock: {bar.price}") self.stop_market_order("MSFT", -quantity, bar.low/2) self.limit_order("MSFT", -quantity, bar.high*2) if data.dividends.contains_key("MSFT"): dividend = data.dividends["MSFT"] self.log(f"{self.time} >> DIVIDEND >> {dividend.symbol} - {dividend.distribution} - {self.portfolio.cash} - {self.portfolio['MSFT'].price}") if data.splits.contains_key("MSFT"): split = data.splits["MSFT"] self.log(f"{self.time} >> SPLIT >> {split.symbol} - {split.split_factor} - {self.portfolio.cash} - {self.portfolio['MSFT'].price}") def on_order_event(self, order_event): # orders get adjusted based on split events to maintain order value order = self.transactions.get_order_by_id(order_event.order_id) self.log(f"{self.time} >> ORDER >> {order}")