# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from AlgorithmImports import *
###
### Uses daily data and a simple moving average cross to place trades and an ema for stop placement
###
###
###
###
class DailyAlgorithm(QCAlgorithm):
def initialize(self):
'''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.'''
self.set_start_date(2013,1,1) #Set Start Date
self.set_end_date(2014,1,1) #Set End Date
self.set_cash(100000) #Set Strategy Cash
# Find more symbols here: http://quantconnect.com/data
self.add_equity("SPY", Resolution.DAILY)
self.add_equity("IBM", Resolution.HOUR, leverage=1)
self._macd = self.macd("SPY", 12, 26, 9, MovingAverageType.WILDERS, Resolution.DAILY, Field.CLOSE)
self._ema = self.ema("IBM", 15 * 6, Resolution.HOUR, Field.SEVEN_BAR)
self._last_action = self.start_date
def on_data(self, data):
'''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
Arguments:
data: Slice object keyed by symbol containing the stock data
'''
if not self._macd.is_ready: return
bar = data.bars.get("IBM")
if not bar: return
if self._last_action.date() == self.time.date(): return
self._last_action = self.time
quantity = self.portfolio["SPY"].quantity
if quantity <= 0 and self._macd.current.value > self._macd.signal.current.value and bar.price > self._ema.current.value:
self.set_holdings("IBM", 0.25)
if quantity >= 0 and self._macd.current.value < self._macd.signal.current.value and bar.price < self._ema.current.value:
self.set_holdings("IBM", -0.25)