# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from AlgorithmImports import * ### ### Uses daily data and a simple moving average cross to place trades and an ema for stop placement ### ### ### ### class DailyAlgorithm(QCAlgorithm): def initialize(self): '''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' self.set_start_date(2013,1,1) #Set Start Date self.set_end_date(2014,1,1) #Set End Date self.set_cash(100000) #Set Strategy Cash # Find more symbols here: http://quantconnect.com/data self.add_equity("SPY", Resolution.DAILY) self.add_equity("IBM", Resolution.HOUR, leverage=1) self._macd = self.macd("SPY", 12, 26, 9, MovingAverageType.WILDERS, Resolution.DAILY, Field.CLOSE) self._ema = self.ema("IBM", 15 * 6, Resolution.HOUR, Field.SEVEN_BAR) self._last_action = self.start_date def on_data(self, data): '''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. Arguments: data: Slice object keyed by symbol containing the stock data ''' if not self._macd.is_ready: return bar = data.bars.get("IBM") if not bar: return if self._last_action.date() == self.time.date(): return self._last_action = self.time quantity = self.portfolio["SPY"].quantity if quantity <= 0 and self._macd.current.value > self._macd.signal.current.value and bar.price > self._ema.current.value: self.set_holdings("IBM", 0.25) if quantity >= 0 and self._macd.current.value < self._macd.signal.current.value and bar.price < self._ema.current.value: self.set_holdings("IBM", -0.25)