# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from AlgorithmImports import * ### ### Example of custom volatility model ### ### ### ### class CustomVolatilityModelAlgorithm(QCAlgorithm): def initialize(self): self.set_start_date(2013,10,7) #Set Start Date self.set_end_date(2015,7,15) #Set End Date self.set_cash(100000) #Set Strategy Cash # Find more symbols here: http://quantconnect.com/data self.equity = self.add_equity("SPY", Resolution.DAILY) self.equity.set_volatility_model(CustomVolatilityModel(10)) def on_data(self, data): if not self.portfolio.invested and self.equity.volatility_model.volatility > 0: self.set_holdings("SPY", 1) # Python implementation of StandardDeviationOfReturnsVolatilityModel # Computes the annualized sample standard deviation of daily returns as the volatility of the security # https://github.com/QuantConnect/Lean/blob/master/Common/Securities/Volatility/StandardDeviationOfReturnsVolatilityModel.cs class CustomVolatilityModel(): def __init__(self, periods): self.last_update = datetime.min self.last_price = 0 self.needs_update = False self.period_span = timedelta(1) self.window = RollingWindow(periods) # Volatility is a mandatory attribute self.volatility = 0 # Updates this model using the new price information in the specified security instance # Update is a mandatory method def update(self, security, data): time_since_last_update = data.end_time - self.last_update if time_since_last_update >= self.period_span and data.price > 0: if self.last_price > 0: self.window.add(float(data.price / self.last_price) - 1.0) self.needs_update = self.window.is_ready self.last_update = data.end_time self.last_price = data.price if self.window.count < 2: self.volatility = 0 return if self.needs_update: self.needs_update = False std = np.std([ x for x in self.window ]) self.volatility = std * np.sqrt(252.0) # Returns history requirements for the volatility model expressed in the form of history request # GetHistoryRequirements is a mandatory method def get_history_requirements(self, security, utc_time): # For simplicity's sake, we will not set a history requirement return None