# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from AlgorithmImports import *
###
### Example of custom volatility model
###
###
###
###
class CustomVolatilityModelAlgorithm(QCAlgorithm):
def initialize(self):
self.set_start_date(2013,10,7) #Set Start Date
self.set_end_date(2015,7,15) #Set End Date
self.set_cash(100000) #Set Strategy Cash
# Find more symbols here: http://quantconnect.com/data
self.equity = self.add_equity("SPY", Resolution.DAILY)
self.equity.set_volatility_model(CustomVolatilityModel(10))
def on_data(self, data):
if not self.portfolio.invested and self.equity.volatility_model.volatility > 0:
self.set_holdings("SPY", 1)
# Python implementation of StandardDeviationOfReturnsVolatilityModel
# Computes the annualized sample standard deviation of daily returns as the volatility of the security
# https://github.com/QuantConnect/Lean/blob/master/Common/Securities/Volatility/StandardDeviationOfReturnsVolatilityModel.cs
class CustomVolatilityModel():
def __init__(self, periods):
self.last_update = datetime.min
self.last_price = 0
self.needs_update = False
self.period_span = timedelta(1)
self.window = RollingWindow(periods)
# Volatility is a mandatory attribute
self.volatility = 0
# Updates this model using the new price information in the specified security instance
# Update is a mandatory method
def update(self, security, data):
time_since_last_update = data.end_time - self.last_update
if time_since_last_update >= self.period_span and data.price > 0:
if self.last_price > 0:
self.window.add(float(data.price / self.last_price) - 1.0)
self.needs_update = self.window.is_ready
self.last_update = data.end_time
self.last_price = data.price
if self.window.count < 2:
self.volatility = 0
return
if self.needs_update:
self.needs_update = False
std = np.std([ x for x in self.window ])
self.volatility = std * np.sqrt(252.0)
# Returns history requirements for the volatility model expressed in the form of history request
# GetHistoryRequirements is a mandatory method
def get_history_requirements(self, security, utc_time):
# For simplicity's sake, we will not set a history requirement
return None