# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from AlgorithmImports import *
from MeanVarianceOptimizationFrameworkAlgorithm import MeanVarianceOptimizationFrameworkAlgorithm
###
### Regression algorithm asserting we can specify a custom portfolio
### optimizer with a MeanVarianceOptimizationPortfolioConstructionModel
###
###
###
###
class CustomPortfolioOptimizerRegressionAlgorithm(MeanVarianceOptimizationFrameworkAlgorithm):
def initialize(self):
super().initialize()
self.set_portfolio_construction(MeanVarianceOptimizationPortfolioConstructionModel(timedelta(days=1), PortfolioBias.LONG_SHORT, 1, 63, Resolution.DAILY, 0.02, CustomPortfolioOptimizer()))
class CustomPortfolioOptimizer:
def optimize(self, historical_returns, expected_returns, covariance):
return [0.5]*(np.array(historical_returns)).shape[1]