# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from AlgorithmImports import * from MeanVarianceOptimizationFrameworkAlgorithm import MeanVarianceOptimizationFrameworkAlgorithm ### ### Regression algorithm asserting we can specify a custom portfolio ### optimizer with a MeanVarianceOptimizationPortfolioConstructionModel ### ### ### ### class CustomPortfolioOptimizerRegressionAlgorithm(MeanVarianceOptimizationFrameworkAlgorithm): def initialize(self): super().initialize() self.set_portfolio_construction(MeanVarianceOptimizationPortfolioConstructionModel(timedelta(days=1), PortfolioBias.LONG_SHORT, 1, 63, Resolution.DAILY, 0.02, CustomPortfolioOptimizer())) class CustomPortfolioOptimizer: def optimize(self, historical_returns, expected_returns, covariance): return [0.5]*(np.array(historical_returns)).shape[1]