# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from AlgorithmImports import * from collections import deque from math import isclose class CustomIndicatorWithExtensionAlgorithm(QCAlgorithm): def initialize(self) -> None: self.set_start_date(2013, 10, 9) self.set_end_date(2013, 10, 9) self._spy = self.add_equity("SPY", Resolution.MINUTE).symbol self._sma_values = [] self._period = 10 self._sma = self.sma(self._spy, self._period, Resolution.MINUTE) self._sma.updated += self.on_sma_updated self._custom_sma = CustomSimpleMovingAverage("My SMA", self._period) self._ext = IndicatorExtensions.of(self._custom_sma, self._sma) self._ext.updated += self.on_indicator_extension_updated self._sma_minus_custom = IndicatorExtensions.minus(self._sma, self._custom_sma) self._sma_minus_custom.updated += self.on_minus_updated self._sma_was_updated = False self._custom_sma_was_updated = False self._sma_minus_custom_was_updated = False def on_sma_updated(self, sender: object, updated: IndicatorDataPoint) -> None: self._sma_was_updated = True if self._sma.is_ready: self._sma_values.append(self._sma.current.value) def on_indicator_extension_updated(self, sender: object, updated: IndicatorDataPoint) -> None: self._custom_sma_was_updated = True sma_last_values = self._sma_values[-self._period:] expected = sum(sma_last_values) / len(sma_last_values) if not isclose(expected, self._custom_sma.value): raise AssertionError(f"Expected the custom SMA to calculate the moving average of the last {self._period} values of the SMA. " f"Current expected: {expected}. Actual {self._custom_sma.value}.") self.debug(f"{self._sma.current.value} :: {self._custom_sma.value} :: {updated}") def on_minus_updated(self, sender: object, updated: IndicatorDataPoint) -> None: self._sma_minus_custom_was_updated = True expected = self._sma.current.value - self._custom_sma.value if not isclose(expected, self._sma_minus_custom.current.value): raise AssertionError(f"Expected the composite minus indicator to calculate the difference between the SMA and custom SMA indicators. " f"Expected: {expected}. Actual {self._sma_minus_custom.current.value}.") def on_end_of_algorithm(self) -> None: if not (self._sma_was_updated and self._custom_sma_was_updated and self._sma_minus_custom_was_updated): raise AssertionError("Expected all indicators to have been updated.") # Custom indicator class CustomSimpleMovingAverage(PythonIndicator): def __init__(self, name: str, period: int) -> None: self.name = name self.value = 0 self.warm_up_period = period self._queue = deque(maxlen=period) def update(self, input: BaseData) -> bool: self._queue.appendleft(input.value) count = len(self._queue) self.value = sum(self._queue) / count return count == self._queue.maxlen