# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from AlgorithmImports import * from collections import deque ### ### Demonstrates how to create a custom indicator and register it for automatic updated ### ### ### ### class CustomIndicatorAlgorithm(QCAlgorithm): def initialize(self) -> None: self.set_start_date(2013,10,7) self.set_end_date(2013,10,11) self.add_equity("SPY", Resolution.SECOND) # Create a QuantConnect indicator and a python custom indicator for comparison self._sma = self.sma("SPY", 60, Resolution.MINUTE) self._custom = CustomSimpleMovingAverage('custom', 60) # The python custom class must inherit from PythonIndicator to enable Updated event handler self._custom.updated += self.custom_updated self._custom_window = RollingWindow(5) self.register_indicator("SPY", self._custom, Resolution.MINUTE) self.plot_indicator('CSMA', self._custom) def custom_updated(self, sender: object, updated: IndicatorDataPoint) -> None: self._custom_window.add(updated) def on_data(self, data: Slice) -> None: if not self.portfolio.invested: self.set_holdings("SPY", 1) if self.time.second == 0: self.log(f" sma -> IsReady: {self._sma.is_ready}. Value: {self._sma.current.value}") self.log(f"custom -> IsReady: {self._custom.is_ready}. Value: {self._custom.value}") # Regression test: test fails with an early quit diff = abs(self._custom.value - self._sma.current.value) if diff > 1e-10: self.quit(f"Quit: indicators difference is {diff}") def on_end_of_algorithm(self) -> None: for item in self._custom_window: self.log(f'{item}') # Python implementation of SimpleMovingAverage. # Represents the traditional simple moving average indicator (SMA). class CustomSimpleMovingAverage(PythonIndicator): def __init__(self, name: str, period: int) -> None: super().__init__() self.name = name self.value = 0 self._queue = deque(maxlen=period) # Update method is mandatory def update(self, input: IndicatorDataPoint) -> bool: self._queue.appendleft(input.value) count = len(self._queue) self.value = np.sum(self._queue) / count return count == self._queue.maxlen