# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from AlgorithmImports import *
from collections import deque
###
### Demonstrates how to create a custom indicator and register it for automatic updated
###
###
###
###
class CustomIndicatorAlgorithm(QCAlgorithm):
def initialize(self) -> None:
self.set_start_date(2013,10,7)
self.set_end_date(2013,10,11)
self.add_equity("SPY", Resolution.SECOND)
# Create a QuantConnect indicator and a python custom indicator for comparison
self._sma = self.sma("SPY", 60, Resolution.MINUTE)
self._custom = CustomSimpleMovingAverage('custom', 60)
# The python custom class must inherit from PythonIndicator to enable Updated event handler
self._custom.updated += self.custom_updated
self._custom_window = RollingWindow(5)
self.register_indicator("SPY", self._custom, Resolution.MINUTE)
self.plot_indicator('CSMA', self._custom)
def custom_updated(self, sender: object, updated: IndicatorDataPoint) -> None:
self._custom_window.add(updated)
def on_data(self, data: Slice) -> None:
if not self.portfolio.invested:
self.set_holdings("SPY", 1)
if self.time.second == 0:
self.log(f" sma -> IsReady: {self._sma.is_ready}. Value: {self._sma.current.value}")
self.log(f"custom -> IsReady: {self._custom.is_ready}. Value: {self._custom.value}")
# Regression test: test fails with an early quit
diff = abs(self._custom.value - self._sma.current.value)
if diff > 1e-10:
self.quit(f"Quit: indicators difference is {diff}")
def on_end_of_algorithm(self) -> None:
for item in self._custom_window:
self.log(f'{item}')
# Python implementation of SimpleMovingAverage.
# Represents the traditional simple moving average indicator (SMA).
class CustomSimpleMovingAverage(PythonIndicator):
def __init__(self, name: str, period: int) -> None:
super().__init__()
self.name = name
self.value = 0
self._queue = deque(maxlen=period)
# Update method is mandatory
def update(self, input: IndicatorDataPoint) -> bool:
self._queue.appendleft(input.value)
count = len(self._queue)
self.value = np.sum(self._queue) / count
return count == self._queue.maxlen