# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
from AlgorithmImports import *
###
### Regression test to demonstrate importing and trading on custom data.
###
###
###
###
###
###
class CustomDataRegressionAlgorithm(QCAlgorithm):
def initialize(self) -> None:
self.set_start_date(2020,1,5) # Set Start Date
self.set_end_date(2020,1,10) # Set End Date
self.set_cash(100000) # Set Strategy Cash
resolution = Resolution.SECOND if self.live_mode else Resolution.DAILY
self.add_data(Bitcoin, "BTC", resolution)
seeder = FuncSecuritySeeder(self.get_last_known_prices)
self.set_security_initializer(lambda x: seeder.seed_security(x))
self._warmed_up_checked = False
def on_data(self, data: Slice) -> None:
if not self.portfolio.invested:
if data['BTC'].close != 0 :
self.order('BTC', self.portfolio.margin_remaining/abs(data['BTC'].close + 1))
def on_securities_changed(self, changes: SecurityChanges) -> None:
changes.filter_custom_securities = False
for added_security in changes.added_securities:
if added_security.symbol.value == "BTC":
self._warmed_up_checked = True
if not added_security.has_data:
raise ValueError(f"Security {added_security.symbol} was not warmed up!")
def on_end_of_algorithm(self) -> None:
if not self._warmed_up_checked:
raise ValueError("Security was not warmed up!")
class Bitcoin(PythonData):
'''Custom Data Type: Bitcoin data from Quandl - https://data.nasdaq.com/databases/BCHAIN'''
def get_source(self, config: SubscriptionDataConfig, date: datetime, is_live_mode: bool) -> SubscriptionDataSource:
if is_live_mode:
return SubscriptionDataSource("https://www.bitstamp.net/api/ticker/", SubscriptionTransportMedium.REST)
#return "http://my-ftp-server.com/futures-data-" + date.to_string("Ymd") + ".zip"
# OR simply return a fixed small data file. Large files will slow down your backtest
subscription = SubscriptionDataSource("https://www.quantconnect.com/api/v2/proxy/nasdaq/api/v3/datatables/QDL/BITFINEX.csv?code=BTCUSD&api_key=WyAazVXnq7ATy_fefTqm")
subscription.sort = True
return subscription
def reader(self, config: SubscriptionDataConfig, line: str, date: datetime, is_live_mode: bool) -> DynamicData:
coin = Bitcoin()
coin.symbol = config.symbol
if is_live_mode:
# Example Line Format:
# {"high": "441.00", "last": "421.86", "timestamp": "1411606877", "bid": "421.96", "vwap": "428.58", "volume": "14120.40683975", "low": "418.83", "ask": "421.99"}
try:
live_btc = json.loads(line)
# If value is zero, return coin
value = live_btc["last"]
if value == 0:
return coin
coin.time = datetime.now()
coin.value = value
coin["Open"] = float(live_btc["open"])
coin["High"] = float(live_btc["high"])
coin["Low"] = float(live_btc["low"])
coin["Close"] = float(live_btc["last"])
coin["Ask"] = float(live_btc["ask"])
coin["Bid"] = float(live_btc["bid"])
coin["VolumeBTC"] = float(live_btc["volume"])
coin["WeightedPrice"] = float(live_btc["vwap"])
return coin
except ValueError:
# Do nothing, possible error in json decoding
return coin
# Example Line Format:
# code date high low mid last bid ask volume
# BTCUSD 2024-10-08 63248.0 61940.0 62246.5 62245.0 62246.0 62247.0 477.91102114
if not (line.strip() and line[7].isdigit()): return coin
try:
data = line.split(',')
coin.time = datetime.strptime(data[1], "%Y-%m-%d")
coin.end_time = coin.time + timedelta(days=1)
coin.value = float(data[5])
coin["High"] = float(data[2])
coin["Low"] = float(data[3])
coin["Mid"] = float(data[4])
coin["Close"] = float(data[5])
coin["Bid"] = float(data[6])
coin["Ask"] = float(data[7])
coin["VolumeBTC"] = float(data[8])
return coin
except ValueError:
# Do nothing, possible error in json decoding
return coin