# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from AlgorithmImports import * ### ### This demonstration imports indian NSE index "NIFTY" as a tradable security in addition to the USDINR currency pair. We move into the ### NSE market when the economy is performing well. ### ### ### ### class CustomDataNIFTYAlgorithm(QCAlgorithm): def initialize(self): self.set_start_date(2008, 1, 8) self.set_end_date(2014, 7, 25) self.set_cash(100000) # Define the symbol and "type" of our generic data: rupee = self.add_data(DollarRupee, "USDINR", Resolution.DAILY).symbol nifty = self.add_data(Nifty, "NIFTY", Resolution.DAILY).symbol self.settings.automatic_indicator_warm_up = True rupee_sma = self.sma(rupee, 20) nifty_sma = self.sma(rupee, 20) self.log(f"SMA - Is ready? USDINR: {rupee_sma.is_ready} NIFTY: {nifty_sma.is_ready}") self.minimum_correlation_history = 50 self.today = CorrelationPair() self.prices = [] def on_data(self, data): if data.contains_key("USDINR"): self.today = CorrelationPair(self.time) self.today.currency_price = data["USDINR"].close if not data.contains_key("NIFTY"): return self.today.nifty_price = data["NIFTY"].close if self.today.date() == data["NIFTY"].time.date(): self.prices.append(self.today) if len(self.prices) > self.minimum_correlation_history: self.prices.pop(0) # Strategy if self.time.weekday() != 2: return cur_qnty = self.portfolio["NIFTY"].quantity quantity = int(self.portfolio.margin_remaining * 0.9 / data["NIFTY"].close) hi_nifty = max(price.nifty_price for price in self.prices) lo_nifty = min(price.nifty_price for price in self.prices) if data["NIFTY"].open >= hi_nifty: code = self.order("NIFTY", quantity - cur_qnty) self.debug("LONG {0} Time: {1} Quantity: {2} Portfolio: {3} Nifty: {4} Buying Power: {5}".format(code, self.time, quantity, self.portfolio["NIFTY"].quantity, data["NIFTY"].close, self.portfolio.total_portfolio_value)) elif data["NIFTY"].open <= lo_nifty: code = self.order("NIFTY", -quantity - cur_qnty) self.debug("SHORT {0} Time: {1} Quantity: {2} Portfolio: {3} Nifty: {4} Buying Power: {5}".format(code, self.time, quantity, self.portfolio["NIFTY"].quantity, data["NIFTY"].close, self.portfolio.total_portfolio_value)) class Nifty(PythonData): '''NIFTY Custom Data Class''' def get_source(self, config, date, is_live_mode): return SubscriptionDataSource("https://www.dropbox.com/s/rsmg44jr6wexn2h/CNXNIFTY.csv?dl=1", SubscriptionTransportMedium.REMOTE_FILE) def reader(self, config, line, date, is_live_mode): if not (line.strip() and line[0].isdigit()): return None # New Nifty object index = Nifty() index.symbol = config.symbol try: # Example File Format: # Date, Open High Low Close Volume Turnover # 2011-09-13 7792.9 7799.9 7722.65 7748.7 116534670 6107.78 data = line.split(',') index.time = datetime.strptime(data[0], "%Y-%m-%d") index.end_time = index.time + timedelta(days=1) index.value = data[4] index["Open"] = float(data[1]) index["High"] = float(data[2]) index["Low"] = float(data[3]) index["Close"] = float(data[4]) except ValueError: # Do nothing return None return index class DollarRupee(PythonData): '''Dollar Rupe is a custom data type we create for this algorithm''' def get_source(self, config, date, is_live_mode): return SubscriptionDataSource("https://www.dropbox.com/s/m6ecmkg9aijwzy2/USDINR.csv?dl=1", SubscriptionTransportMedium.REMOTE_FILE) def reader(self, config, line, date, is_live_mode): if not (line.strip() and line[0].isdigit()): return None # New USDINR object currency = DollarRupee() currency.symbol = config.symbol try: data = line.split(',') currency.time = datetime.strptime(data[0], "%Y-%m-%d") currency.end_time = currency.time + timedelta(days=1) currency.value = data[1] currency["Close"] = float(data[1]) except ValueError: # Do nothing return None return currency class CorrelationPair: '''Correlation Pair is a helper class to combine two data points which we'll use to perform the correlation.''' def __init__(self, *args): self.nifty_price = 0 # Nifty price for this correlation pair self.currency_price = 0 # Currency price for this correlation pair self._date = datetime.min # Date of the correlation pair if len(args) > 0: self._date = args[0] def date(self): return self._date.date()