# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from AlgorithmImports import *
###
### This demonstration imports indian NSE index "NIFTY" as a tradable security in addition to the USDINR currency pair. We move into the
### NSE market when the economy is performing well.
###
###
###
###
class CustomDataNIFTYAlgorithm(QCAlgorithm):
def initialize(self):
self.set_start_date(2008, 1, 8)
self.set_end_date(2014, 7, 25)
self.set_cash(100000)
# Define the symbol and "type" of our generic data:
rupee = self.add_data(DollarRupee, "USDINR", Resolution.DAILY).symbol
nifty = self.add_data(Nifty, "NIFTY", Resolution.DAILY).symbol
self.settings.automatic_indicator_warm_up = True
rupee_sma = self.sma(rupee, 20)
nifty_sma = self.sma(rupee, 20)
self.log(f"SMA - Is ready? USDINR: {rupee_sma.is_ready} NIFTY: {nifty_sma.is_ready}")
self.minimum_correlation_history = 50
self.today = CorrelationPair()
self.prices = []
def on_data(self, data):
if data.contains_key("USDINR"):
self.today = CorrelationPair(self.time)
self.today.currency_price = data["USDINR"].close
if not data.contains_key("NIFTY"): return
self.today.nifty_price = data["NIFTY"].close
if self.today.date() == data["NIFTY"].time.date():
self.prices.append(self.today)
if len(self.prices) > self.minimum_correlation_history:
self.prices.pop(0)
# Strategy
if self.time.weekday() != 2: return
cur_qnty = self.portfolio["NIFTY"].quantity
quantity = int(self.portfolio.margin_remaining * 0.9 / data["NIFTY"].close)
hi_nifty = max(price.nifty_price for price in self.prices)
lo_nifty = min(price.nifty_price for price in self.prices)
if data["NIFTY"].open >= hi_nifty:
code = self.order("NIFTY", quantity - cur_qnty)
self.debug("LONG {0} Time: {1} Quantity: {2} Portfolio: {3} Nifty: {4} Buying Power: {5}".format(code, self.time, quantity, self.portfolio["NIFTY"].quantity, data["NIFTY"].close, self.portfolio.total_portfolio_value))
elif data["NIFTY"].open <= lo_nifty:
code = self.order("NIFTY", -quantity - cur_qnty)
self.debug("SHORT {0} Time: {1} Quantity: {2} Portfolio: {3} Nifty: {4} Buying Power: {5}".format(code, self.time, quantity, self.portfolio["NIFTY"].quantity, data["NIFTY"].close, self.portfolio.total_portfolio_value))
class Nifty(PythonData):
'''NIFTY Custom Data Class'''
def get_source(self, config, date, is_live_mode):
return SubscriptionDataSource("https://www.dropbox.com/s/rsmg44jr6wexn2h/CNXNIFTY.csv?dl=1", SubscriptionTransportMedium.REMOTE_FILE)
def reader(self, config, line, date, is_live_mode):
if not (line.strip() and line[0].isdigit()): return None
# New Nifty object
index = Nifty()
index.symbol = config.symbol
try:
# Example File Format:
# Date, Open High Low Close Volume Turnover
# 2011-09-13 7792.9 7799.9 7722.65 7748.7 116534670 6107.78
data = line.split(',')
index.time = datetime.strptime(data[0], "%Y-%m-%d")
index.end_time = index.time + timedelta(days=1)
index.value = data[4]
index["Open"] = float(data[1])
index["High"] = float(data[2])
index["Low"] = float(data[3])
index["Close"] = float(data[4])
except ValueError:
# Do nothing
return None
return index
class DollarRupee(PythonData):
'''Dollar Rupe is a custom data type we create for this algorithm'''
def get_source(self, config, date, is_live_mode):
return SubscriptionDataSource("https://www.dropbox.com/s/m6ecmkg9aijwzy2/USDINR.csv?dl=1", SubscriptionTransportMedium.REMOTE_FILE)
def reader(self, config, line, date, is_live_mode):
if not (line.strip() and line[0].isdigit()): return None
# New USDINR object
currency = DollarRupee()
currency.symbol = config.symbol
try:
data = line.split(',')
currency.time = datetime.strptime(data[0], "%Y-%m-%d")
currency.end_time = currency.time + timedelta(days=1)
currency.value = data[1]
currency["Close"] = float(data[1])
except ValueError:
# Do nothing
return None
return currency
class CorrelationPair:
'''Correlation Pair is a helper class to combine two data points which we'll use to perform the correlation.'''
def __init__(self, *args):
self.nifty_price = 0 # Nifty price for this correlation pair
self.currency_price = 0 # Currency price for this correlation pair
self._date = datetime.min # Date of the correlation pair
if len(args) > 0: self._date = args[0]
def date(self):
return self._date.date()