# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from AlgorithmImports import * from HistoryAlgorithm import * ### ### The algorithm creates new indicator value with the existing indicator method by Indicator Extensions ### Demonstration of using the external custom data to request the IBM and SPY daily data ### ### ### ### ### ### ### ### class CustomDataIndicatorExtensionsAlgorithm(QCAlgorithm): # Initialize the data and resolution you require for your strategy def initialize(self): self.set_start_date(2014,1,1) self.set_end_date(2018,1,1) self.set_cash(25000) self.ibm = 'IBM' self.spy = 'SPY' # Define the symbol and "type" of our generic data self.add_data(CustomDataEquity, self.ibm, Resolution.DAILY) self.add_data(CustomDataEquity, self.spy, Resolution.DAILY) # Set up default Indicators, these are just 'identities' of the closing price self.ibm_sma = self.sma(self.ibm, 1, Resolution.DAILY) self.spy_sma = self.sma(self.spy, 1, Resolution.DAILY) # This will create a new indicator whose value is sma_s_p_y / sma_i_b_m self.ratio = IndicatorExtensions.over(self.spy_sma, self.ibm_sma) # Plot indicators each time they update using the PlotIndicator function self.plot_indicator("Ratio", self.ratio) self.plot_indicator("Data", self.ibm_sma, self.spy_sma) # OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. def on_data(self, data): # Wait for all indicators to fully initialize if not (self.ibm_sma.is_ready and self.spy_sma.is_ready and self.ratio.is_ready): return if not self.portfolio.invested and self.ratio.current.value > 1: self.market_order(self.ibm, 100) elif self.ratio.current.value < 1: self.liquidate()