# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from AlgorithmImports import *
from HistoryAlgorithm import *
###
### The algorithm creates new indicator value with the existing indicator method by Indicator Extensions
### Demonstration of using the external custom data to request the IBM and SPY daily data
###
###
###
###
###
###
###
###
class CustomDataIndicatorExtensionsAlgorithm(QCAlgorithm):
# Initialize the data and resolution you require for your strategy
def initialize(self):
self.set_start_date(2014,1,1)
self.set_end_date(2018,1,1)
self.set_cash(25000)
self.ibm = 'IBM'
self.spy = 'SPY'
# Define the symbol and "type" of our generic data
self.add_data(CustomDataEquity, self.ibm, Resolution.DAILY)
self.add_data(CustomDataEquity, self.spy, Resolution.DAILY)
# Set up default Indicators, these are just 'identities' of the closing price
self.ibm_sma = self.sma(self.ibm, 1, Resolution.DAILY)
self.spy_sma = self.sma(self.spy, 1, Resolution.DAILY)
# This will create a new indicator whose value is sma_s_p_y / sma_i_b_m
self.ratio = IndicatorExtensions.over(self.spy_sma, self.ibm_sma)
# Plot indicators each time they update using the PlotIndicator function
self.plot_indicator("Ratio", self.ratio)
self.plot_indicator("Data", self.ibm_sma, self.spy_sma)
# OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
def on_data(self, data):
# Wait for all indicators to fully initialize
if not (self.ibm_sma.is_ready and self.spy_sma.is_ready and self.ratio.is_ready): return
if not self.portfolio.invested and self.ratio.current.value > 1:
self.market_order(self.ibm, 100)
elif self.ratio.current.value < 1:
self.liquidate()