# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and from AlgorithmImports import * ### ### Regression algorithm to demonstrate the use of SetBenchmark() with custom data ### class CustomDataBenchmarkRegressionAlgorithm(QCAlgorithm): def initialize(self): self.set_start_date(2017, 8, 18) # Set Start Date self.set_end_date(2017, 8, 21) # Set End Date self.set_cash(100000) # Set Strategy Cash self.add_equity("SPY", Resolution.HOUR) # Load benchmark data self.custom_symbol = self.add_data(ExampleCustomData, "ExampleCustomData", Resolution.HOUR).symbol self.set_benchmark(self.custom_symbol) def on_data(self, data): if not self.portfolio.invested: self.set_holdings("SPY", 1) def on_end_of_algorithm(self): security_benchmark = self.benchmark if security_benchmark.security.price == 0: raise AssertionError("Security benchmark price was not expected to be zero") class ExampleCustomData(PythonData): def get_source(self, config, date, is_live): source = "https://www.dl.dropboxusercontent.com/s/d83xvd7mm9fzpk0/path_to_my_csv_data.csv?dl=0" return SubscriptionDataSource(source, SubscriptionTransportMedium.REMOTE_FILE) def reader(self, config, line, date, is_live): data = line.split(',') obj_data = ExampleCustomData() obj_data.symbol = config.symbol obj_data.time = datetime.strptime(data[0], '%Y-%m-%d %H:%M:%S') + timedelta(hours=20) obj_data.value = float(data[4]) obj_data["Open"] = float(data[1]) obj_data["High"] = float(data[2]) obj_data["Low"] = float(data[3]) obj_data["Close"] = float(data[4]) return obj_data