# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from AlgorithmImports import * ### ### Algorithm demonstrating custom charting support in QuantConnect. ### The entire charting system of quantconnect is adaptable. You can adjust it to draw whatever you'd like. ### Charts can be stacked, or overlayed on each other. Series can be candles, lines or scatter plots. ### Even the default behaviours of QuantConnect can be overridden. ### ### ### ### ### class CustomChartingAlgorithm(QCAlgorithm): def initialize(self): self.set_start_date(2016,1,1) self.set_end_date(2017,1,1) self.set_cash(100000) spy = self.add_equity("SPY", Resolution.DAILY).symbol # In your initialize method: # Chart - Master Container for the Chart: stock_plot = Chart("Trade Plot") # On the Trade Plotter Chart we want 3 series: trades and price: stock_plot.add_series(Series("Buy", SeriesType.SCATTER, 0)) stock_plot.add_series(Series("Sell", SeriesType.SCATTER, 0)) stock_plot.add_series(Series("Price", SeriesType.LINE, 0)) self.add_chart(stock_plot) # On the Average Cross Chart we want 2 series, slow MA and fast MA avg_cross = Chart("Average Cross") avg_cross.add_series(Series("FastMA", SeriesType.LINE, 0)) avg_cross.add_series(Series("SlowMA", SeriesType.LINE, 0)) self.add_chart(avg_cross) # There's support for candlestick charts built-in: weekly_spy_plot = Chart("Weekly SPY") spy_candlesticks = CandlestickSeries("SPY") weekly_spy_plot.add_series(spy_candlesticks) self.add_chart(weekly_spy_plot) self.consolidate(spy, Calendar.WEEKLY, lambda bar: self.plot("Weekly SPY", "SPY", bar)) self.fast_ma = 0 self.slow_ma = 0 self.last_price = 0 self.resample = datetime.min self.resample_period = (self.end_date - self.start_date) / 2000 def on_data(self, slice): if slice["SPY"] is None: return self.last_price = slice["SPY"].close if self.fast_ma == 0: self.fast_ma = self.last_price if self.slow_ma == 0: self.slow_ma = self.last_price self.fast_ma = (0.01 * self.last_price) + (0.99 * self.fast_ma) self.slow_ma = (0.001 * self.last_price) + (0.999 * self.slow_ma) if self.time > self.resample: self.resample = self.time + self.resample_period self.plot("Average Cross", "FastMA", self.fast_ma) self.plot("Average Cross", "SlowMA", self.slow_ma) # On the 5th days when not invested buy: if not self.portfolio.invested and self.time.day % 13 == 0: self.order("SPY", (int)(self.portfolio.margin_remaining / self.last_price)) self.plot("Trade Plot", "Buy", self.last_price) elif self.time.day % 21 == 0 and self.portfolio.invested: self.plot("Trade Plot", "Sell", self.last_price) self.liquidate() def on_end_of_day(self, symbol): #Log the end of day prices: self.plot("Trade Plot", "Price", self.last_price)