# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from AlgorithmImports import *
###
### Algorithm demonstrating custom charting support in QuantConnect.
### The entire charting system of quantconnect is adaptable. You can adjust it to draw whatever you'd like.
### Charts can be stacked, or overlayed on each other. Series can be candles, lines or scatter plots.
### Even the default behaviours of QuantConnect can be overridden.
###
###
###
###
###
class CustomChartingAlgorithm(QCAlgorithm):
def initialize(self):
self.set_start_date(2016,1,1)
self.set_end_date(2017,1,1)
self.set_cash(100000)
spy = self.add_equity("SPY", Resolution.DAILY).symbol
# In your initialize method:
# Chart - Master Container for the Chart:
stock_plot = Chart("Trade Plot")
# On the Trade Plotter Chart we want 3 series: trades and price:
stock_plot.add_series(Series("Buy", SeriesType.SCATTER, 0))
stock_plot.add_series(Series("Sell", SeriesType.SCATTER, 0))
stock_plot.add_series(Series("Price", SeriesType.LINE, 0))
self.add_chart(stock_plot)
# On the Average Cross Chart we want 2 series, slow MA and fast MA
avg_cross = Chart("Average Cross")
avg_cross.add_series(Series("FastMA", SeriesType.LINE, 0))
avg_cross.add_series(Series("SlowMA", SeriesType.LINE, 0))
self.add_chart(avg_cross)
# There's support for candlestick charts built-in:
weekly_spy_plot = Chart("Weekly SPY")
spy_candlesticks = CandlestickSeries("SPY")
weekly_spy_plot.add_series(spy_candlesticks)
self.add_chart(weekly_spy_plot)
self.consolidate(spy, Calendar.WEEKLY, lambda bar: self.plot("Weekly SPY", "SPY", bar))
self.fast_ma = 0
self.slow_ma = 0
self.last_price = 0
self.resample = datetime.min
self.resample_period = (self.end_date - self.start_date) / 2000
def on_data(self, slice):
if slice["SPY"] is None: return
self.last_price = slice["SPY"].close
if self.fast_ma == 0: self.fast_ma = self.last_price
if self.slow_ma == 0: self.slow_ma = self.last_price
self.fast_ma = (0.01 * self.last_price) + (0.99 * self.fast_ma)
self.slow_ma = (0.001 * self.last_price) + (0.999 * self.slow_ma)
if self.time > self.resample:
self.resample = self.time + self.resample_period
self.plot("Average Cross", "FastMA", self.fast_ma)
self.plot("Average Cross", "SlowMA", self.slow_ma)
# On the 5th days when not invested buy:
if not self.portfolio.invested and self.time.day % 13 == 0:
self.order("SPY", (int)(self.portfolio.margin_remaining / self.last_price))
self.plot("Trade Plot", "Buy", self.last_price)
elif self.time.day % 21 == 0 and self.portfolio.invested:
self.plot("Trade Plot", "Sell", self.last_price)
self.liquidate()
def on_end_of_day(self, symbol):
#Log the end of day prices:
self.plot("Trade Plot", "Price", self.last_price)