# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from AlgorithmImports import * ### ### Test algorithm using 'ConfidenceWeightedPortfolioConstructionModel' and 'ConstantAlphaModel' ### generating a constant 'Insight' with a 0.25 confidence ### class ConfidenceWeightedFrameworkAlgorithm(QCAlgorithm): def initialize(self): ''' Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' # Set requested data resolution self.universe_settings.resolution = Resolution.MINUTE # Order margin value has to have a minimum of 0.5% of Portfolio value, allows filtering out small trades and reduce fees. # Commented so regression algorithm is more sensitive #self.settings.minimum_order_margin_portfolio_percentage = 0.005 self.set_start_date(2013,10,7) #Set Start Date self.set_end_date(2013,10,11) #Set End Date self.set_cash(100000) #Set Strategy Cash symbols = [ Symbol.create("SPY", SecurityType.EQUITY, Market.USA) ] # set algorithm framework models self.set_universe_selection(ManualUniverseSelectionModel(symbols)) self.set_alpha(ConstantAlphaModel(InsightType.PRICE, InsightDirection.UP, timedelta(minutes = 20), 0.025, 0.25)) self.set_portfolio_construction(ConfidenceWeightedPortfolioConstructionModel()) self.set_execution(ImmediateExecutionModel()) def on_end_of_algorithm(self): # holdings value should be 0.25 - to avoid price fluctuation issue we compare with 0.28 and 0.23 if (self.portfolio.total_holdings_value > self.portfolio.total_portfolio_value * 0.28 or self.portfolio.total_holdings_value < self.portfolio.total_portfolio_value * 0.23): raise ValueError("Unexpected Total Holdings Value: " + str(self.portfolio.total_holdings_value))