# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from AlgorithmImports import *
###
### Demonstration of how to define a universe as a combination of use the coarse fundamental data and fine fundamental data
###
###
###
###
###
class CoarseFineFundamentalRegressionAlgorithm(QCAlgorithm):
def initialize(self):
self.set_start_date(2014,3,24) #Set Start Date
self.set_end_date(2014,4,7) #Set End Date
self.set_cash(50000) #Set Strategy Cash
self.universe_settings.resolution = Resolution.DAILY
# this add universe method accepts two parameters:
# - coarse selection function: accepts an List[CoarseFundamental] and returns an List[Symbol]
# - fine selection function: accepts an List[FineFundamental] and returns an List[Symbol]
self.add_universe(self.coarse_selection_function, self.fine_selection_function)
self.changes = None
self.number_of_symbols_fine = 2
# return a list of three fixed symbol objects
def coarse_selection_function(self, coarse):
tickers = [ "GOOG", "BAC", "SPY" ]
if self.time.date() < date(2014, 4, 1):
tickers = [ "AAPL", "AIG", "IBM" ]
return [ Symbol.create(x, SecurityType.EQUITY, Market.USA) for x in tickers ]
# sort the data by market capitalization and take the top 'number_of_symbols_fine'
def fine_selection_function(self, fine):
# sort descending by market capitalization
sorted_by_market_cap = sorted(fine, key=lambda x: x.market_cap, reverse=True)
# take the top entries from our sorted collection
return [ x.symbol for x in sorted_by_market_cap[:self.number_of_symbols_fine] ]
def on_data(self, data):
# if we have no changes, do nothing
if self.changes is None: return
# liquidate removed securities
for security in self.changes.removed_securities:
if security.invested:
self.liquidate(security.symbol)
self.debug("Liquidated Stock: " + str(security.symbol.value))
# we want 50% allocation in each security in our universe
for security in self.changes.added_securities:
if (security.fundamentals.earning_ratios.equity_per_share_growth.one_year > 0.25):
self.set_holdings(security.symbol, 0.5)
self.debug("Purchased Stock: " + str(security.symbol.value))
self.changes = None
# this event fires whenever we have changes to our universe
def on_securities_changed(self, changes):
self.changes = changes