# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from AlgorithmImports import * ### ### Demonstration of how to define a universe as a combination of use the coarse fundamental data and fine fundamental data ### ### ### ### ### class CoarseFineFundamentalRegressionAlgorithm(QCAlgorithm): def initialize(self): self.set_start_date(2014,3,24) #Set Start Date self.set_end_date(2014,4,7) #Set End Date self.set_cash(50000) #Set Strategy Cash self.universe_settings.resolution = Resolution.DAILY # this add universe method accepts two parameters: # - coarse selection function: accepts an List[CoarseFundamental] and returns an List[Symbol] # - fine selection function: accepts an List[FineFundamental] and returns an List[Symbol] self.add_universe(self.coarse_selection_function, self.fine_selection_function) self.changes = None self.number_of_symbols_fine = 2 # return a list of three fixed symbol objects def coarse_selection_function(self, coarse): tickers = [ "GOOG", "BAC", "SPY" ] if self.time.date() < date(2014, 4, 1): tickers = [ "AAPL", "AIG", "IBM" ] return [ Symbol.create(x, SecurityType.EQUITY, Market.USA) for x in tickers ] # sort the data by market capitalization and take the top 'number_of_symbols_fine' def fine_selection_function(self, fine): # sort descending by market capitalization sorted_by_market_cap = sorted(fine, key=lambda x: x.market_cap, reverse=True) # take the top entries from our sorted collection return [ x.symbol for x in sorted_by_market_cap[:self.number_of_symbols_fine] ] def on_data(self, data): # if we have no changes, do nothing if self.changes is None: return # liquidate removed securities for security in self.changes.removed_securities: if security.invested: self.liquidate(security.symbol) self.debug("Liquidated Stock: " + str(security.symbol.value)) # we want 50% allocation in each security in our universe for security in self.changes.added_securities: if (security.fundamentals.earning_ratios.equity_per_share_growth.one_year > 0.25): self.set_holdings(security.symbol, 0.5) self.debug("Purchased Stock: " + str(security.symbol.value)) self.changes = None # this event fires whenever we have changes to our universe def on_securities_changed(self, changes): self.changes = changes