# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from AlgorithmImports import *
from Alphas.HistoricalReturnsAlphaModel import HistoricalReturnsAlphaModel
from Portfolio.BlackLittermanOptimizationPortfolioConstructionModel import *
from Portfolio.UnconstrainedMeanVariancePortfolioOptimizer import UnconstrainedMeanVariancePortfolioOptimizer
from Risk.NullRiskManagementModel import NullRiskManagementModel
###
### Black-Litterman framework algorithm
### Uses the HistoricalReturnsAlphaModel and the BlackLittermanPortfolioConstructionModel
### to create an algorithm that rebalances the portfolio according to Black-Litterman portfolio optimization
###
###
###
###
class BlackLittermanPortfolioOptimizationFrameworkAlgorithm(QCAlgorithm):
'''Black-Litterman Optimization algorithm.'''
def initialize(self):
# Set requested data resolution
self.universe_settings.resolution = Resolution.MINUTE
# Order margin value has to have a minimum of 0.5% of Portfolio value, allows filtering out small trades and reduce fees.
# Commented so regression algorithm is more sensitive
#self.settings.minimum_order_margin_portfolio_percentage = 0.005
self.set_start_date(2013,10,7) #Set Start Date
self.set_end_date(2013,10,11) #Set End Date
self.set_cash(100000) #Set Strategy Cash
self._symbols = [ Symbol.create(x, SecurityType.EQUITY, Market.USA) for x in [ 'AIG', 'BAC', 'IBM', 'SPY' ] ]
optimizer = UnconstrainedMeanVariancePortfolioOptimizer()
# set algorithm framework models
self.set_universe_selection(CoarseFundamentalUniverseSelectionModel(self.coarse_selector))
self.set_alpha(HistoricalReturnsAlphaModel(resolution = Resolution.DAILY))
self.set_portfolio_construction(BlackLittermanOptimizationPortfolioConstructionModel(optimizer = optimizer))
self.set_execution(ImmediateExecutionModel())
self.set_risk_management(NullRiskManagementModel())
def coarse_selector(self, coarse):
# Drops SPY after the 8th
last = 3 if self.time.day > 8 else len(self._symbols)
return self._symbols[0:last]
def on_order_event(self, order_event):
if order_event.status == OrderStatus.FILLED:
self.debug(order_event)