# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from AlgorithmImports import * from Alphas.HistoricalReturnsAlphaModel import HistoricalReturnsAlphaModel from Portfolio.BlackLittermanOptimizationPortfolioConstructionModel import * from Portfolio.UnconstrainedMeanVariancePortfolioOptimizer import UnconstrainedMeanVariancePortfolioOptimizer from Risk.NullRiskManagementModel import NullRiskManagementModel ### ### Black-Litterman framework algorithm ### Uses the HistoricalReturnsAlphaModel and the BlackLittermanPortfolioConstructionModel ### to create an algorithm that rebalances the portfolio according to Black-Litterman portfolio optimization ### ### ### ### class BlackLittermanPortfolioOptimizationFrameworkAlgorithm(QCAlgorithm): '''Black-Litterman Optimization algorithm.''' def initialize(self): # Set requested data resolution self.universe_settings.resolution = Resolution.MINUTE # Order margin value has to have a minimum of 0.5% of Portfolio value, allows filtering out small trades and reduce fees. # Commented so regression algorithm is more sensitive #self.settings.minimum_order_margin_portfolio_percentage = 0.005 self.set_start_date(2013,10,7) #Set Start Date self.set_end_date(2013,10,11) #Set End Date self.set_cash(100000) #Set Strategy Cash self._symbols = [ Symbol.create(x, SecurityType.EQUITY, Market.USA) for x in [ 'AIG', 'BAC', 'IBM', 'SPY' ] ] optimizer = UnconstrainedMeanVariancePortfolioOptimizer() # set algorithm framework models self.set_universe_selection(CoarseFundamentalUniverseSelectionModel(self.coarse_selector)) self.set_alpha(HistoricalReturnsAlphaModel(resolution = Resolution.DAILY)) self.set_portfolio_construction(BlackLittermanOptimizationPortfolioConstructionModel(optimizer = optimizer)) self.set_execution(ImmediateExecutionModel()) self.set_risk_management(NullRiskManagementModel()) def coarse_selector(self, coarse): # Drops SPY after the 8th last = 3 if self.time.day > 8 else len(self._symbols) return self._symbols[0:last] def on_order_event(self, order_event): if order_event.status == OrderStatus.FILLED: self.debug(order_event)